基于知识图谱与模糊贝叶斯推理的航空发动机故障诊断OA北大核心CSTPCD
Fault Diagnosis of Aero-Engine Based on KG-FBN Inference
针对航空发动机结构功能复杂,存在贝叶斯网络构建难、节点条件概率难以获得精确值的问题,提出基于知识图谱与模糊贝叶斯网络的故障推理诊断方法.首先,以历史故障数据为依据,构建航空发动机故障知识图谱;其次,提出"知识图谱-贝叶斯网络"的映射方法,用于快速构建贝叶斯网络;然后,引入模糊集合论,解决工程实际中概率参数的不确定性问题;最后,以航空发动机滑油系统故障进行实例验证,结果表明所提方法既能提高贝叶斯网络的构建效率,又能实现故障诊断的不确定性推理,可用于诊断策略优化和设备可靠性提升,具有较强的工程应用价值.
Aimed at the problems that structure and function of aero-engine are complex,construction of Bayesian network is difficult,and it is difficult to obtain the exact value of node conditional probability,in this paper,a knowledge graph with fuzzy Bayesian network(KG-FBN)inference fault diagnosis method is proposed.Firstly,on the basis of large-scale historical fault data,an aero-engine fault knowledge graph is constructed by using the knowledge graph technology.Secondly,a mapping method of"knowledge graph-Bayesian network"is proposed to rapidly construct Bayesian network,and introduce fuzzy set theory to solve the uncertainty problem of probability parameters in engineering practice.Finally,an example is giv-en to verify the feasibility of the proposed method.The results show that the proposed method can im-prove the efficiency of Bayesian network construction and achieve uncertain inference in fault diagnosis,can be also used for optimizing diagnostic strategies,and can improve equipment reliability,and is strong in engineering application value.
张亮;吴闯;贾宇航;谢小月;唐希浪
空军工程大学装备管理与无人机工程学院,西安,71005195478部队,重庆,401329
航空发动机知识图谱模糊贝叶斯网络故障诊断
aero-engineknowledge graphfuzzy Bayesian networkfault diagnosis
《空军工程大学学报》 2024 (004)
5-12 / 8
国家自然科学基金(72201276);西安市科协青年人才托举计划(959202313098);陕西省自然科学基础研究计划(2023-JC-QN-0059)
评论