| 注册
首页|期刊导航|西南医科大学学报|基于卷积神经网络GoogLeNet算法构建颅内动脉瘤诊断模型

基于卷积神经网络GoogLeNet算法构建颅内动脉瘤诊断模型

詹翔 王艺任 彭艳 张容 向红俐 巩佳利 庞皓文 周平

西南医科大学学报2024,Vol.47Issue(4):339-344,6.
西南医科大学学报2024,Vol.47Issue(4):339-344,6.DOI:10.3969/j.issn.2096-3351.2024.04.013

基于卷积神经网络GoogLeNet算法构建颅内动脉瘤诊断模型

Construction of intracranial aneurysm diagnostic model based on GoogLeNet algorithm of convolutional neural network

詹翔 1王艺任 2彭艳 3张容 4向红俐 5巩佳利 5庞皓文 6周平2

作者信息

  • 1. 西南医科大学附属医院放射科(泸州 646000)
  • 2. 西南医科大学附属医院放射科(泸州 646000)||西南医科大学护理学院(泸州 646000)
  • 3. 西南医科大学附属医院介入医学部(泸州 646000)
  • 4. 西南医科大学公共卫生学院(泸州 646000)
  • 5. 西南医科大学护理学院(泸州 646000)
  • 6. 西南医科大学附属医院肿瘤科(泸州 646000)
  • 折叠

摘要

Abstract

Objective To explore the application effect of GoogLeNet algorithm based on convolutional neural network(CNN)in automatic classification and diagnosis of intracranial aneurysms.Methods Computed tomography angiography images of 234 patients with intracranial aneurysms and normal controls who underwent head CT scanning at the Affiliated Hospital of Southwest Medical Uni-versity between January 2020 and January 2023 were retrospectively collected for this study.A convolutional neural network model based on the GoogLeNet algorithm was constructed using the PyTorch framework.The model parameters were initialized and optimized using the He initialization method and the Adam optimizer.Cross-entropy was used as the loss function,and batch normalization and dropout techniques were employed for model training and to prevent overfitting.Results The intracranial aneurysm diagnostic model based on the GoogLeNet algorithm in this study achieved high accuracy and low loss function value on the test set.The ROC curve showed that the AUC of the training set was 0.891 and the test set was 0.851,which proved that the model had a good application pros-pect in the diagnosis of intracranial aneurysms.Conclusion The GoogLeNet algorithm based on convolutional neural network could be effectively applied to the diagnosis of intracranial aneurysms with high accuracy and low loss function value,which provided reference for the early diagnosis and treatment of intracranial aneurysms.

关键词

深度学习/卷积神经网络/颅内动脉瘤/诊断模型/人工智能

Key words

Deep learning/Convolutional neural network/Intracranial aneurysms/Diagnostic model/Artificial intelligence

分类

医药卫生

引用本文复制引用

詹翔,王艺任,彭艳,张容,向红俐,巩佳利,庞皓文,周平..基于卷积神经网络GoogLeNet算法构建颅内动脉瘤诊断模型[J].西南医科大学学报,2024,47(4):339-344,6.

基金项目

四川省医学科研课题计划(S21004) (S21004)

古蔺县人民医院-西南医科大学附属医院科技战略合作项目(2022GLXNYDFY05) (2022GLXNYDFY05)

西南医科大学应用基础研究计划(2019ZQN086) (2019ZQN086)

国家级大学生创新创业训练计划项目(202310632001,202310632028) (202310632001,202310632028)

西南医科大学学报

2096-3351

访问量0
|
下载量0
段落导航相关论文