| 注册
首页|期刊导航|南昌工程学院学报|基于深度学习的高光谱图像去噪综述

基于深度学习的高光谱图像去噪综述

张俊 谭耀鑫 卢静静 徐晨光 邓承志

南昌工程学院学报2024,Vol.43Issue(3):88-96,9.
南昌工程学院学报2024,Vol.43Issue(3):88-96,9.

基于深度学习的高光谱图像去噪综述

A review of hyperspectral image denoising based on deep learning

张俊 1谭耀鑫 2卢静静 2徐晨光 2邓承志2

作者信息

  • 1. 南昌工程学院江西省水信息协同感知与智能处理重点实验室,江西南昌 330099||南昌工程学院工程数学与先进计算重点实验室,江西南昌 330099
  • 2. 南昌工程学院江西省水信息协同感知与智能处理重点实验室,江西南昌 330099
  • 折叠

摘要

Abstract

Hyperspectral images are widely used in agriculture,earth science,geological disasters and other fields because hyperspectral images have the advantage that image integrates with spectrum.However,in the imaging process of hyperspec-tral image,due to various factors,hyperspectral images will inevitably be polluted by multiple noises.The existence of noises often limits the application value of hyperspectral images.Therefore,hyperspectral image denoising is an important way of image preprocessing.As one of the rapidly developing technologies in recent years,deep learning has been successfully ap-plied in the task of hyperspectral image denoising.The number of research results on deep learning-based hyperspectral im-age denoising is increasing year by year.In order to facilitate a more systematic and comprehensive exploration of this field,this paper outlines the research progress of deep learning-based hyperspectral image denoising,classifies and summarizes the existing main research findings.Finally,the future research trends in this field are prospected.

关键词

高光谱图像去噪/深度学习/卷积神经网络/循环神经网络/注意力机制

Key words

hyperspectral image denoising/deep learning/convolution neural network/recurrent neural network/attention mechanism

分类

计算机与自动化

引用本文复制引用

张俊,谭耀鑫,卢静静,徐晨光,邓承志..基于深度学习的高光谱图像去噪综述[J].南昌工程学院学报,2024,43(3):88-96,9.

基金项目

江西省自然科学基金资助项目(20232BAB201017) (20232BAB201017)

南昌工程学院研究生创新计划项目(YJSCX202316) (YJSCX202316)

南昌工程学院学报

1674-0076

访问量0
|
下载量0
段落导航相关论文