| 注册
首页|期刊导航|南京林业大学学报(自然科学版)|基于注意力机制和改进DeepLabV3+的无人机林区图像地物分割方法

基于注意力机制和改进DeepLabV3+的无人机林区图像地物分割方法

赵玉刚 刘文萍 周焱 陈日强 宗世祥 骆有庆

南京林业大学学报(自然科学版)2024,Vol.48Issue(4):93-103,11.
南京林业大学学报(自然科学版)2024,Vol.48Issue(4):93-103,11.DOI:10.12302/j.issn.1000-2006.202209055

基于注意力机制和改进DeepLabV3+的无人机林区图像地物分割方法

UAV forestry land-cover image segmentation method based on attention mechanism and improved DeepLabV3+

赵玉刚 1刘文萍 1周焱 1陈日强 1宗世祥 2骆有庆2

作者信息

  • 1. 北京林业大学信息学院,国家林业和草原局林业智能信息处理工程技术研究中心,北京 100083
  • 2. 北京林业大学林学院,北京 100083
  • 折叠

摘要

Abstract

[Objective]This study proposes the feature segmentation method Tree-DeepLab for unmanned aerial vehicle(UAV)forest images,based on an attention mechanism and the DeepLabV3+semantic segmentation network,to extract the main feature distribution information in forest areas.[Method]First,the forest images were annotated according to feature types from six categories(Platanus orientalis,Ginkgo biloba,Populus sp.,grassland,road,and bare ground)to obtain the semantic segmentation datasets.Second,the following improvements were made to the semantic segmentation network:(1)the Xception network,the backbone of the DeepLabV3+semantic segmentation network,was replaced by ResNeSt101 with a split attention mechanism;(2)the atrous convolutions of different dilation rates in the atrous spatial pyramid pooling were connected using a combination of serial and parallel forms,while the combination of the atrous convolution dilation rates was simultaneously changed;(3)a shallow feature fusion branch was added to the decoder;(4)spatial attention modules were added to the decoder;and(5)efficient channel attention modules were added to the decoder.[Result]Training and testing were performed based on an in-house dataset.The experimental results revealed that the Tree-DeepLab semantic segmentation model had mean pixel accuracy(mPA)and mean intersection over union(mIoU)values of 97.04%and85.01%,respectively,exceeding those of the original DeepLabV3+by 4.03 and 14.07 percentage points,respectively,and outperforming U-Net and PSPNet.[Conclusion]The study demonstrates that the Tree-DeepLab semantic segmentation model can effectively segment UAV aerial photography images of forest areas to obtain the distribution information of the main feature types in forest areas.

关键词

无人机/地物分割/林区图像/DeepLabV3+/注意力机制/ResNeSt

Key words

unmanned aerial vehicle(UAV)/land-cover image segmentation/forestry images/DeepLabV3+/attention mechanism/ResNeSt

分类

农业科技

引用本文复制引用

赵玉刚,刘文萍,周焱,陈日强,宗世祥,骆有庆..基于注意力机制和改进DeepLabV3+的无人机林区图像地物分割方法[J].南京林业大学学报(自然科学版),2024,48(4):93-103,11.

基金项目

国家林业和草原局重大应急科技项目(ZD202001) (ZD202001)

国家重点研发计划(2021YFD1400900). (2021YFD1400900)

南京林业大学学报(自然科学版)

OA北大核心CSTPCD

1000-2006

访问量0
|
下载量0
段落导航相关论文