|国家科技期刊平台
首页|期刊导航|南京农业大学学报|基于LiDAR多维点云优化的垄作菊花采摘机器人自主导航方法研究

基于LiDAR多维点云优化的垄作菊花采摘机器人自主导航方法研究OA北大核心CSTPCD

Autonomous navigation system for chrysanthemum picking robot based on LiDAR multidimensional point cloud optimization

中文摘要英文摘要

[目的]针对田间作业环境复杂导致金丝皇菊采摘机器人行走不稳定、生产效率低的问题,本文设计了一种基于LiDAR多维点云优化的菊花采摘机器人自主导航系统,以实现机器人在农田中的精准作业与高效生产.[方法]通过履带式底盘搭载的Velodyne 16 线激光雷达获取田间三维点云信息,并对其进行坐标校正和体素滤波预处理.提出了一种多维点云优化算法,可按照金丝皇菊植株生长特性获取不同坐标轴下的有效点云特征,生成左右两侧垄沟线;并采用改进纯跟踪控制算法对最小二乘法拟合得到导航基准线进行跟踪导航.[结果]通过对Stanley控制算法和改进纯跟踪控制算法进行仿真试验,改进纯跟踪算法表现出更高效的跟踪性能.利用金丝皇菊采摘机器人在南京市湖熟菊花园进行实地试验.试验结果表明,基于LiDAR多维点云优化的自主导航算法横向平均绝对误差为0.047 4 m,标准差值为0.030 6 m,位置偏差绝对值为 0.078 9 m,航向平均绝对误差为 2.177°,标准差值为 2.589°,横向平均绝对误差减小 67.13%,离散程度降低48.34%.[结论]本文提出的基于LiDAR多维点云优化算法和改进纯跟踪算法可以有效提高导航精准度,改善系统抗干扰性,导航效果较好,从而保证金丝皇菊采摘机器人的精准作业.

[Objectives]In response to the problems of unstable walking and low production efficiency of the golden chrysanthemum picking robot caused by the complex field operating environment,this paper designed an autonomous navigation system for the chrysanthemum picking robot based on LiDAR multi-dimensional point cloud optimization to achieve precise operation and efficient production of the robot in farmland.[Methods]The tracked chassis was equipped with a Velodyne 16-line LiDAR which was used to obtain 3D point cloud information in the field and coordinate correction and voxel filtering preprocessing were performed on it.A multidimensional point cloud optimization algorithm was proposed,which could adaptively obtain effective point cloud features under different coordinate axes on the characteristics of the golden chrysanthemum plant,and obtain ridge lines on both sides.The final navigation baseline was obtained using the least squares method to fit ridge lines,which was tracked by using an improved pure tracking control algorithm.[Results]Through simulation experiments on the Stanley control algorithm and the improved pure tracking control algorithm,the improved pure tracking algorithm showed more efficient tracking performance.A field experiment was conducted using the golden chrysanthemum harvesting robot at the Hushu Chrysanthemum Garden in Nanjing.The experimental results showed that the autonomous navigation algorithm based on LiDAR multi-dimensional point cloud optimization had a lateral average absolute error of 0.047 4 m,a standard deviation of 0.030 6 m,an extreme absolute position deviation of 0.078 9 m,a heading average absolute error of 2.177°,and a standard deviation of 2.589°,the lateral average absolute error was reduced by 67.13%and the degree of dispersion was reduced by 48.34%.[Conclusions]The LiDAR multi-dimensional point cloud optimization algorithm and improved pure tracking algorithm proposed in this article can effectively improve navigation accuracy,improve system anti-interference,and achieve good navigation results,thereby ensuring the precise operation of the golden chrysanthemum picking robot.

李培艺;汪小旵;王延鑫;武尧;李泽晟

南京农业大学工学院,江苏 南京 210031

农业工程

金丝皇菊自主采摘履带式机器人激光雷达田间自主导航点云处理

automatic picking of golden chrysanthemumtracked robotLiDARautonomous navigation in the fieldpoint cloud processing

《南京农业大学学报》 2024 (004)

809-822 / 14

江苏省现代农机装备与技术示范推广项目(NJ2021-11)

10.7685/jnau.202308019

评论