| 注册
首页|期刊导航|南京邮电大学学报(自然科学版)|基于特征融合的大规模MIMO系统CSI反馈

基于特征融合的大规模MIMO系统CSI反馈

安永丽 蔡浩然 胡泽冰 纪占林

南京邮电大学学报(自然科学版)2024,Vol.44Issue(3):1-7,7.
南京邮电大学学报(自然科学版)2024,Vol.44Issue(3):1-7,7.DOI:10.14132/j.cnki.1673-5439.2024.03.001

基于特征融合的大规模MIMO系统CSI反馈

CSI feedback for large-scale MIMO systems based on feature fusion

安永丽 1蔡浩然 1胡泽冰 1纪占林1

作者信息

  • 1. 华北理工大学 人工智能学院,河北 唐山 063000||河北省工业智能感知重点实验室,河北 唐山 063000
  • 折叠

摘要

Abstract

Channel state information(CSI)feedback is a key issue in large-scale multiple-input multiple-output(MIMO)systems.The number of base station antennas in large-scale MIMO systems is huge,and the CSI feedback holds problems such as large feedback overhead and low feedback accuracy.In regard of these,a feature fusion-based CSI feedback network,FFNet,is proposed based on a deep learning approach.The CSI features are fused at different scales in the encoder,while an attention-based mechanism of feature fusion,a multi-channel multi-resolution convolutional network,and the channel rearrangement are deployed in the decoder.Thus,the compressed CSI is reconstructed with high accuracy.Simulation results show that the feedback accuracy is higher in both indoor and outdoor channel conditions,compared to several classical deep learning CSI feedback methods.

关键词

大规模MIMO/信道状态信息/深度学习/卷积神经网络/特征融合

Key words

large-scale multiple-input multiple-output(MIMO)/channel state information(CSI)/deep learning/convolutional neural network/feature fusion

分类

电子信息工程

引用本文复制引用

安永丽,蔡浩然,胡泽冰,纪占林..基于特征融合的大规模MIMO系统CSI反馈[J].南京邮电大学学报(自然科学版),2024,44(3):1-7,7.

基金项目

国家科技部重点研发专项(2017YFE0135700)和河北省高层次人才工程项目(A201903011)资助项目 (2017YFE0135700)

南京邮电大学学报(自然科学版)

OA北大核心CSTPCD

1673-5439

访问量0
|
下载量0
段落导航相关论文