| 注册
首页|期刊导航|农业机械学报|茶叶生产装备自动化与智能化技术研究进展与展望

茶叶生产装备自动化与智能化技术研究进展与展望

高一聪 许晨 林琼 王淑花 魏喆

农业机械学报2024,Vol.55Issue(7):1-14,14.
农业机械学报2024,Vol.55Issue(7):1-14,14.DOI:10.6041/j.issn.1000-1298.2024.07.001

茶叶生产装备自动化与智能化技术研究进展与展望

Tea Production Equipment Automation and Intelligent Technology Research Progress and Prospects

高一聪 1许晨 1林琼 2王淑花 2魏喆3

作者信息

  • 1. 浙江大学流体动力基础件与机电系统全国重点实验室,杭州 310058
  • 2. 浙江工业大学机械工程学院,杭州 310014
  • 3. 沈阳工业大学机械工程学院,沈阳 110870
  • 折叠

摘要

Abstract

Tea industry is a traditional characteristic advantageous industry in China,and the integration of new generation information technology and agriculture,such as big data,Internet of things,cloud computing,etc.,promotes the transformation and upgrading of the tea industry to intelligence,and plays an important role in empowering and increasing the efficiency of the whole tea industry chain.On the basis of an overview of the tea industry intelligent technology system,the domestic and international research was summarized based on the application of information technology in the tea industry intelligence around the four aspects of planting,processing,testing and sales,and the key technologies to achieve intelligence in the tea industry was analyzed.Finally,it was looked forward to the future development direction of tea industry intelligence,and suggested to enhance the tea industry information technology infrastructure construction,strengthen the research and development of intelligent tea machine equipment for human-machine collaboration,pay attention to the development of tea planting and processing models,and enhance the ability of big data analysis to help tea sales,in order to lay the foundation for better use of information technology for tea industry upgrading.

关键词

茶产业/茶叶自动化加工/茶叶智能检测/信息技术

Key words

tea industry/tea automatic processing/tea intelligent testing/information technology

分类

信息技术与安全科学

引用本文复制引用

高一聪,许晨,林琼,王淑花,魏喆..茶叶生产装备自动化与智能化技术研究进展与展望[J].农业机械学报,2024,55(7):1-14,14.

基金项目

国家自然科学基金项目(52375272)、浙江省教育厅科研项目(Y202249547)、浙江工业大学研究生教改项目(2022316)、国家资助博士后研究人员计划项目(GZB20230339)和湖州市自然科学基金项目(2021YZ07) (52375272)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量0
|
下载量0
段落导航相关论文