| 注册
首页|期刊导航|农业机械学报|基于改进注意力机制和多语义特征增强的自然环境下枣品种识别方法

基于改进注意力机制和多语义特征增强的自然环境下枣品种识别方法

雷浩 苑迎春 许楠 何振学

农业机械学报2024,Vol.55Issue(7):270-279,324,11.
农业机械学报2024,Vol.55Issue(7):270-279,324,11.DOI:10.6041/j.issn.1000-1298.2024.07.026

基于改进注意力机制和多语义特征增强的自然环境下枣品种识别方法

Jujube Variety Recognition Based on Improved Attention Mechanism and Multi-semantic Feature Enhancement

雷浩 1苑迎春 1许楠 1何振学1

作者信息

  • 1. 河北农业大学信息科学与技术学院,保定 071001
  • 折叠

摘要

Abstract

In response to the low accuracy of jujube variety recognition in current natural scenarios,a jujube variety recognition model was proposed based on attention mechanism and multi-semantic feature enhancement(ICBAM_MSFE_Res50).On the basis of ResNet-50,the attention mechanism ICBAM(improved convolutional block attention module)was introduced.ICBAM improved the convolutional block attention module(CBAM)by using one-dimensional convolution and multi-scale hole convolution,eliminating information loss during feature map dimensionality reduction,reducing the computational and parameter complexity of the model,and improving the model's ability to extract fine-grained features in jujube fruit regions.At the same time,a multi-semantic feature enhancement(MSFE)module was proposed,which extracted more local salient features of jujube fruit through jujube fruit region localization algorithm,and used saliency feature suppression algorithm to force the model to learn secondary features of jujube fruit,thereby achieving the learning of multiple semantic features of jujube fruit.The experimental results showed that the accuracy of the model on the dataset of 20 types of jujube varieties was 92.20%,which was 4.26 percentage points higher than that of ResNet-50.Compared with the AlexNet,VGG-16,ResNet-18,and InceptionV3 models,the accuracy was improved by 15.84,9.22,6.86,and 3.55 percentage points,respectively.Compared with other jujube variety recognition methods,this method still performed the best in the recognition of 20 types of jujube,which can provide reference for research on jujube variety recognition in natural scenarios.

关键词

枣品种识别/深度学习/注意力机制/多语义特征增强

Key words

jujube variety recognition/deep learning/attention mechanism/multi-semantic feature enhancement

分类

计算机与自动化

引用本文复制引用

雷浩,苑迎春,许楠,何振学..基于改进注意力机制和多语义特征增强的自然环境下枣品种识别方法[J].农业机械学报,2024,55(7):270-279,324,11.

基金项目

国家自然科学基金项目(62102130)和河北省自然科学基金项目(F2020204003) (62102130)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量0
|
下载量0
段落导航相关论文