| 注册
首页|期刊导航|农业机械学报|基于改进YOLO v8s的小麦小穗赤霉病检测研究

基于改进YOLO v8s的小麦小穗赤霉病检测研究

时雷 杨程凯 雷镜楷 刘志浩 王健 席磊 熊蜀峰

农业机械学报2024,Vol.55Issue(7):280-289,10.
农业机械学报2024,Vol.55Issue(7):280-289,10.DOI:10.6041/j.issn.1000-1298.2024.07.027

基于改进YOLO v8s的小麦小穗赤霉病检测研究

Wheat Spikelet Detection of Fusarium Head Blight Based on Improved YOLO v8s

时雷 1杨程凯 2雷镜楷 2刘志浩 2王健 2席磊 1熊蜀峰2

作者信息

  • 1. 河南农业大学信息与管理科学学院,郑州 450046||河南粮食作物协同创新中心,郑州 450046
  • 2. 河南农业大学信息与管理科学学院,郑州 450046
  • 折叠

摘要

Abstract

To achieve rapid and accurate identification of fusarium head blight on wheat spikelets in complex field background,a wheat fusarium head blight image dataset comprising a total of 640 images across three growth stages:flowering,grain filling,and ripening of winter wheat was constructed.Additionally,a wheat spikelet fusarium head blight recognition method based on an improved YOLO v8s model was proposed.Firstly,using the omni-dimensional dynamic convolution(ODConv)to replace the standard convolution in the backbone network enhanced the network's extraction of features from target regions and suppressed interference from cluttered background information.Secondly,an improved Efficient RepGFPN feature fusion network was utilized in the neck network to integrate low-level features with high-level semantic information,enabling the model to extract richer feature information.Lastly,the enhanced intersection over union(EIoU)loss function was employed instead of the complete intersection over union(CIoU)loss function to accelerate model convergence speed and further improve model accuracy,thus achieving rapid and accurate identification of fusarium head blight on wheat spikelets.Model validation on a self-built dataset revealed that the improved model(OCE-YOLO v8s)achieved a detection accuracy of 98.3%for fusarium head blight on wheat spikelets,which was an improvement of 2 percentage points compared with the original model.Compared with Faster R-CNN,CenterNet,YOLO v5s,YOLO v6s,and YOLO v7 models,the OCE-YOLO v8s model achieved improvements of 36 percentages,25.7 percentages,2.1 percentages,2.6 percentages,and 3.9 percentages,respectively.The OCE-YOLO v8s model effectively met the requirements for precise detection of fusarium head blight on wheat spikelets and could provide valuable insights for real-time monitoring of crop diseases and pests in complex backgrounds of field environments.

关键词

小麦赤霉病/目标检测/YOLO v8/全维动态卷积/Neck网络/EIoU

Key words

fusarium head blight/object detection/YOLO v8/ODConv/Neck network/EIoU

分类

信息技术与安全科学

引用本文复制引用

时雷,杨程凯,雷镜楷,刘志浩,王健,席磊,熊蜀峰..基于改进YOLO v8s的小麦小穗赤霉病检测研究[J].农业机械学报,2024,55(7):280-289,10.

基金项目

国家自然科学基金项目(31501225)、河南省科技研发计划联合基金项目(222301420113)、河南省自然科学基金项目(232300420186)和河南省科技攻关项目(242102111193) (31501225)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量0
|
下载量0
段落导航相关论文