| 注册
首页|期刊导航|农业机械学报|基于改进Mask R-CNN的笼养死鸭识别方法

基于改进Mask R-CNN的笼养死鸭识别方法

柏宗春 吕胤春 朱一星 马肄恒 段恩泽

农业机械学报2024,Vol.55Issue(7):305-314,10.
农业机械学报2024,Vol.55Issue(7):305-314,10.DOI:10.6041/j.issn.1000-1298.2024.07.030

基于改进Mask R-CNN的笼养死鸭识别方法

Dead Duck Recognition Method Based on Improved Mask R-CNN

柏宗春 1吕胤春 2朱一星 3马肄恒 3段恩泽1

作者信息

  • 1. 江苏省农业科学院农业设施与装备研究所,南京 210014||农业农村部长江中下游设施农业工程重点实验室,南京 210014
  • 2. 江苏省农业科学院农业设施与装备研究所,南京 210014||江苏大学农业工程学院,镇江 212013
  • 3. 江苏省农业科学院农业设施与装备研究所,南京 210014
  • 折叠

摘要

Abstract

Traditional manual methods for identifying dead ducks within large-scale stacked cage poultry houses have proven to be inefficient,labor-intensive,and costly.Focusing on stacked cage housing for meat ducks,a deep learning-based method was proposed for dead duck recognition.To collect the necessary dataset,a specialized autonomous inspection system tailored for meat duck housing within three-dimensional stacked environments was initially designed.To address the issue of severe wire mesh obstruction within the cage housing,machine vision techniques were employed to repair the cage mesh and enhance images by using OpenCV.A dead duck recognition model was constructed based on Mask R-CNN,and further optimized with the Swin Transformer to overcome the limitation of Mask R-CNN's global information integration.The accuracy of dead duck recognition among the SOLO v2,Mask R-CNN,and Mask R-CNN+Swin Transformer models was compared and analyzed.Experimental results demonstrated that under the condition of mAP value of 90%,the Mask R-CNN+Swin Transformer model achieved an overall dead duck recognition rate of 95.8%within the duck cages,outperforming other mainstream object detection algorithms on the autonomous inspection equipment.

关键词

机器视觉/笼养肉鸭/死鸭识别/Mask R-CNN

Key words

machine vision/caged ducks/dead duck recognition/Mask R-CNN

分类

农业科技

引用本文复制引用

柏宗春,吕胤春,朱一星,马肄恒,段恩泽..基于改进Mask R-CNN的笼养死鸭识别方法[J].农业机械学报,2024,55(7):305-314,10.

基金项目

江苏省现代农业重大核心技术创新项目(CX(22)1008) (CX(22)

农业机械学报

OA北大核心CSTPCD

1000-1298

访问量0
|
下载量0
段落导航相关论文