| 注册
首页|期刊导航|科技创新与应用|基于改进YOLOv8的道路坑洼检测算法

基于改进YOLOv8的道路坑洼检测算法

白瑞瑞 赵建光 赵佳娜 郑志豪

科技创新与应用2024,Vol.14Issue(21):56-60,5.
科技创新与应用2024,Vol.14Issue(21):56-60,5.DOI:10.19981/j.CN23-1581/G3.2024.21.014

基于改进YOLOv8的道路坑洼检测算法

白瑞瑞 1赵建光 1赵佳娜 1郑志豪1

作者信息

  • 1. 河北建筑工程学院,河北张家口 075000
  • 折叠

摘要

Abstract

In order to solve the problem of low accuracy of existing object detection algorithms in road pothole detection,a road pothole detection algorithm based on improved YOLOv8 is proposed.First of all,the Triplet Attention(TA)module is introduced into the YOLOv8 backbone network to emphasize the importance of capturing cross-dimensional interactions when calculating attention weights,so as to provide richer feature representations and be more efficient in calculation,which is helpful to locate and identify detection objects more accurately.In this study,a new lightweight detection head,Flex_Detect,is proposed for potholed roads,which uses double-branch convolution and dynamically adjusts the anchor frame to ensure that the model can effectively detect targets on feature maps of different scales,which is helpful to improve the adaptability of the model to targets of different sizes,and improve the performance and generalization ability of the model in object detection tasks.The experimental results show that the average accuracy of YOLOv8_Efficient on open data sets is 2.5%higher than that of the original YOLOv8n and 4.1%higher than that of YOLOv5n.

关键词

目标检测/注意力机制/检测头/道路坑洼检测/YOLOv8

Key words

object detection/attention mechanism/detection head/road pothole detection/YOLOv8

分类

信息技术与安全科学

引用本文复制引用

白瑞瑞,赵建光,赵佳娜,郑志豪..基于改进YOLOv8的道路坑洼检测算法[J].科技创新与应用,2024,14(21):56-60,5.

基金项目

河北省教育厅科学研究项目(QN2024148) (QN2024148)

科技创新与应用

2095-2945

访问量0
|
下载量0
段落导航相关论文