| 注册
首页|期刊导航|软件导刊|基于SMOTEENN-XGBoost的信用卡风险客户预测

基于SMOTEENN-XGBoost的信用卡风险客户预测

田园 郭红烈 吉倩

软件导刊2024,Vol.23Issue(7):138-143,6.
软件导刊2024,Vol.23Issue(7):138-143,6.DOI:10.11907/rjdk.231548

基于SMOTEENN-XGBoost的信用卡风险客户预测

Prediction of Customers with Credit Card Risk Based on SMOTEENN-XGBoost

田园 1郭红烈 2吉倩2

作者信息

  • 1. 曲靖职业技术学院 经济贸易系,云南 曲靖 655000
  • 2. 昆明理工大学 信息工程与自动化学院,云南 昆明 650500
  • 折叠

摘要

Abstract

To achieve risk management for credit cards and reduce economic losses caused by credit card defaults,it is particularly important to develop an effective credit card risk prediction model.In response to the issue of imbalanced credit card data distribution,the ENN algo-rithm was used to improve the classical SMOTE algorithm,resulting in the construction of a credit card risk prediction model based on SMO-TEENN-XGBoost.Empirical evidence reveals that this model achieves a prediction accuracy of 91.8%and an AUPRC value of 0.903,which is significantly better than classical models such as SVC,GBDT,and AdaBoost.It holds significant value in predicting high-risk credit card users and aiding banks in accurately identifying customer credit risks.

关键词

信用卡风险预测/数据平衡/SMOTEENN/XGBoost

Key words

credit card risk prediction/data balancing/SMOTEENN/XGBoost

分类

信息技术与安全科学

引用本文复制引用

田园,郭红烈,吉倩..基于SMOTEENN-XGBoost的信用卡风险客户预测[J].软件导刊,2024,23(7):138-143,6.

基金项目

云南省基础研究计划面上项目(202201AT070189) (202201AT070189)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文