| 注册
首页|期刊导航|软件导刊|改进DCGAN数据增强的生活垃圾图像识别

改进DCGAN数据增强的生活垃圾图像识别

刘天锴 方睿 石兴 魏袁慧

软件导刊2024,Vol.23Issue(7):174-180,7.
软件导刊2024,Vol.23Issue(7):174-180,7.DOI:10.11907/rjdk.231703

改进DCGAN数据增强的生活垃圾图像识别

Improved DCGAN Data Augmentation for Household Garbage Image Recognition

刘天锴 1方睿 1石兴 1魏袁慧1

作者信息

  • 1. 成都信息工程大学 计算机学院,四川 成都 610103
  • 折叠

摘要

Abstract

To address the issues of low image quality and uneven class distribution in the current field of household waste classification datas-ets,a garbage image generation method based on improved DCGAN data augmentation(EW-DCGAN)is proposed.Firstly,redesign the net-work structure of DCGAN and adjust the size of the output image of the generator to 128×128 pixels;Then,the loss function BCE Loss is re-placed with a loss function with Wasserstein distance,and a gradient penalty term is introduced to enhance the discriminative ability of the model discriminator;Finally,the ECA attention mechanism is added to the model generator to better cope with the interference of invalid in-formation in the image,thereby efficiently extracting useful features.The experiment shows that the image quality generated using EW-DC-GAN is higher,and the FID value decreases significantly compared to images generated only using DCGAN.It can expand and enhance the da-taset in the field of garbage classification.The comparison of ResNet,MobileNet,and EfficientNet neural networks based on transfer learning on the pre enhanced and post enhanced datasets showed that the accuracy of the models improved by 7.09%,5.34%,and 4.8%,respectively,compared to the original dataset.

关键词

深度卷积生成对抗网络/垃圾分类/数据增强/Wasserstein距离

Key words

deep convolutional generative adversarial network/garbage classification/data augmentation/Wasserstein distance

分类

信息技术与安全科学

引用本文复制引用

刘天锴,方睿,石兴,魏袁慧..改进DCGAN数据增强的生活垃圾图像识别[J].软件导刊,2024,23(7):174-180,7.

基金项目

国家重点研发计划项目(2020YFA0608000) (2020YFA0608000)

成都信息工程大学科研基金项目(KYTZ202156) (KYTZ202156)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文