|国家科技期刊平台
首页|期刊导航|人民珠江|基于数据分解与NARX优化的滇池CODMn时间序列预测

基于数据分解与NARX优化的滇池CODMn时间序列预测OA

Time Series Prediction of CODMn in Dianchi Lake Based on Data Decomposition and NARX Optimization

中文摘要英文摘要

高锰酸盐指数(CODMn)是衡量水体受还原性物质污染程度的重要指标之一.为提高CODMn预测精度,结合小波包变换(WPT)、成功历史智能优化(SHIO)算法和非线性自回归神经网络(NARX),提出WPT-SHIO-NARX CODMn时间序列预测模型.首先利用WPT将CODMn时间序列分解为1个周期项分量和3个波动项分量;然后简要介绍SHIO原理,利用SHIO对NARX输入延时阶数等超参数进行调优;最后基于调优获得的超参数建立WPT-SHIO-NARX模型对CODMn周期项及波动项分量进行预测,重构后得到最终预测结果,并构建WPT-粒子群优化算法(PSO)-NARX、WPT-遗传算法(GA)-NARX、WPT-NARX、SHIO-NARX、WPT-SHIO-极限学习机(ELM)、WPT-SHIO-BP神经网络模型作对比分析,并以滇池西苑隧道断面、观音山断面2004-2015年逐周CODMn监测数据对各模型进行验证.结果表明:WPT-SHIO-NARX模型具有较好的预测性能,西苑隧道、观音山在未来1周、未来2周(半月)CODMn预测的平均绝对百分比误差MAPE分别为0.108%和0.045%、0.151%和0.165%,对未来4周(1月)CODMn预测的MAPE分别为1.383%、0.809%,对未来8周(2月)CODMn预测的MAPE分别为6.180%、4.573%,预测精度优于其他对比模型;WPT能将CODMn时序数据分解为更具规律的子序列分量,提高模型预测精度;SHIO能有效优化NARX超参数,显著提升NARX性能,优化效果优于GA、PSO;NARX网络具有延时和反馈机制,更适用于时间序列预测,其预测效果优于ELM、BP网络.

The permanganate index(CODMn)is one of the important indicators for measuring the degree of pollution of water bodies by reducing substances.To improve the prediction accuracy of CODMn,a WPT-SHIO-NARX CODMn time series prediction model is proposed,which combines wavelet packet transform(WPT),success history intelligent optimization(SHIO)algorithm,and nonlinear autoregressive neural network(NARX).Firstly,WPT is used to decompose the CODMn time series into one periodic component and three fluctuation components;Then,the principle of SHIO is briefly introduced,and it is used to optimize hyperparameters such as NARX input delay order;Finally,based on the hyperparameters obtained through optimization,the WPT-SHIO-NARX model is established to predict the periodic and fluctuation components of CODMn.After reconstruction,the final prediction results are obtained.Comparative analyses are made with WPT-particle swarm optimization(PSO)-NARX,WPT-genetic algorithm(GA)-NARX,WPT-NARX,SHIO-NARX,WPT-SHIO extreme learning machine(ELM),and WPT-SHIO-BP neural network models.The models are validated using weekly CODMn monitoring data from 2004 to 2015 at the Xiyuan Tunnel and Guanyin Mountain sections of Dianchi Lake.The results show that the WPT-SHIO-NARX model has good predictive performance,with mean absolute percentage error(MAPE)of 0.108%and 0.045%,0.151%and 0.165%for the next 1 week and 2 weeks(half a month)of CODMn prediction at Xiyuan Tunnel and Guanyin Mountain,respectively.The MAPE for the next 4 weeks(January)of CODMn prediction is 1.383%and 0.809%,and the MAPE for the next 8 weeks(February)of CODMn prediction is 6.180%and 4.573%,respectively.The prediction accuracy is higher than other comparative models;WPT can decompose CODMn time series data into more regular subsequence components,improving the model's prediction accuracy;SHIO can effectively optimize NARX hyperparameters,significantly improving NARX performance,with optimization effects superior to GA and PSO;the NARX network has delay and feedback mechanisms,making it more suitable for time series prediction,and its predictive performance is better than that of ELM and BP networks.

王永顺;崔东文

云南省水文水资源局文山分局,云南 文山 661100云南省文山州水务局,云南 文山 663000

水利科学

CODMn预测非线性自回归神经网络成功历史智能优化算法小波包变换滇池

CODMn forecastnonlinear autoregressive neural networksuccess history intelligent optimization algorithmwavelet packet transformDianchi Lake

《人民珠江》 2024 (007)

92-100 / 9

云南省创新团队建设专项(2018HC024);云南重点研发计划(科技入滇专项);国家澜湄合作基金项目(2018-1177-02)

10.3969/j.issn.1001-9235.2024.07.011

评论