| 注册
首页|期刊导航|四川大学学报(自然科学版)|低开销的匿名通信群组威胁人物挖掘方法

低开销的匿名通信群组威胁人物挖掘方法

霍艺璇 赵佳鹏 时金桥 齐敏 孙岩炜 王学宾 杨燕燕

四川大学学报(自然科学版)2024,Vol.61Issue(4):37-46,10.
四川大学学报(自然科学版)2024,Vol.61Issue(4):37-46,10.DOI:10.19907/j.0490-6756.2024.040004

低开销的匿名通信群组威胁人物挖掘方法

A low-cost method for mining threat actor in anonymous communication groups

霍艺璇 1赵佳鹏 1时金桥 1齐敏 1孙岩炜 1王学宾 2杨燕燕3

作者信息

  • 1. 北京邮电大学网络空间安全学院,北京 100876
  • 2. 中国科学院信息工程研究所,北京 100093
  • 3. 中国人民公安大学信息网络安全学院,北京 100038
  • 折叠

摘要

Abstract

The deep and dark web,due to its high anonymity,easy accessibility,and convenient transac-tions,has fostered a large number of illegal activities,including promoting online gambling and selling drugs.The development of online social interactions has led to the formation of groups on the encrypted instant mes-saging app Telegram,which act as gathering places for the promotion of cybercriminal activities and the ex-change of resources and tools.Many criminals are exploiting Telegram's anonymity feature to conduct busi-ness in groups with unrestricted content,short messages,and difficult-to-understand text,thereby evading regulation and posing a serious threat to national social stability and cybersecurity.Analyzing a substantial vol-ume of low-information content within groups has the potential to reveal numerous hidden threat actors,thereby providing regulatory,governance,and enforcement agencies with a wealth of valuable leads.This pa-per proposes a low-cost method for mining threat actors in anonymous communication groups,which adjusts the importance of network public hazard terminologies in the text to optimize the quality of content analysis.By the integration of large language models,this method conducts unsupervised and high-quality dynamic temporal topic extraction and visualized statistical analysis of group content.The experimental results demon-strate that the proposed method significantly reduces the cost of manual annotation,improves the quantity and quality of threat actor mining,and enhances understanding of the network public hazard ecosystem,and there-fore has practical implications when compared to traditional classification methods.

关键词

网络公害/文本挖掘/Telegram群组/主题建模

Key words

Network public hazard/Text mining/Telegram groups/Topic modeling

分类

计算机与自动化

引用本文复制引用

霍艺璇,赵佳鹏,时金桥,齐敏,孙岩炜,王学宾,杨燕燕..低开销的匿名通信群组威胁人物挖掘方法[J].四川大学学报(自然科学版),2024,61(4):37-46,10.

基金项目

国家重点研发计划"网络空间安全治理"专项(2023YFB3106600) (2023YFB3106600)

四川大学学报(自然科学版)

OA北大核心CSTPCD

0490-6756

访问量0
|
下载量0
段落导航相关论文