| 注册
首页|期刊导航|四川大学学报(自然科学版)|求解一类时间分数阶扩散方程的深度学习方法

求解一类时间分数阶扩散方程的深度学习方法

于雅新 冯民富

四川大学学报(自然科学版)2024,Vol.61Issue(4):62-69,8.
四川大学学报(自然科学版)2024,Vol.61Issue(4):62-69,8.DOI:10.19907/j.0490-6756.2024.041003

求解一类时间分数阶扩散方程的深度学习方法

A deep learning method for the time-fractional diffusion equations

于雅新 1冯民富1

作者信息

  • 1. 四川大学数学学院,610064
  • 折叠

摘要

Abstract

Under very general assumptions,standard feedforward neural networks can approximate any con-tinuous or discontinuous function as long as the number of hidden elements in the hidden layer is large enough.Particularly,when deep learning methods are used to solve differential equations,the idea is to build a loss function,collect sample points and use the stochastic gradient descent method to train the neural network to approximate the solution of equation directly on the collected sample points,thus transform the problem of solving equation into the optimization problem of minimizing loss function.When the time-fractional diffusion equations are solved by a deep learning method,the loss function measures the approximation degree be-tween the neural network and the fractional differential operator,initial value conditions,boundary condition,etc.Theoretically,the very neural network reducing the loss function to zero is a solution of equation.In this paper,we show that the loss function in the form of mean square error can reduce to zero and the correspond-ing neural network converges uniformly to the exact solution,that is,the neural network is a solution of equa-tion.Numerical examples verify the theoretical analysis.

关键词

神经网络/时间分数阶扩散方程/数值分析

Key words

Neural network/Time-fractional diffusion equation/Numerical analysis

分类

数理科学

引用本文复制引用

于雅新,冯民富..求解一类时间分数阶扩散方程的深度学习方法[J].四川大学学报(自然科学版),2024,61(4):62-69,8.

基金项目

国家自然科学基金(11971337) (11971337)

四川大学学报(自然科学版)

OA北大核心CSTPCD

0490-6756

访问量0
|
下载量0
段落导航相关论文