四川大学学报(自然科学版)2024,Vol.61Issue(4):70-79,10.DOI:10.19907/j.0490-6756.2024.041004
一种求解时间分数阶非线性抛物型方程的等阶混合有限元
An equal-order mixed finite element for the time fractional nonlinear parabolic equations
摘要
Abstract
In this paper,we propose a k-th equal-order mixed finite element for the numerical solutions of the time fractional nonlinear parabolic equations.To obtain the fully discrete scheme of finite element,the classi-cal L1 scheme is used in the time direction and the stabilized mixed finite element method based on local pro-jection is used in the spatial direction.We define the mixed projection and give the error estimate for the finite element.Numerical examples verify the theoretical results.关键词
混合有限元/时间分数阶非线性抛物型方程/逼近Key words
Mixed finite element/Time fractional nonlinear parabolic equation/Approximation分类
数学引用本文复制引用
唐瑜岭,胡朝浪,杨荣奎,冯民富..一种求解时间分数阶非线性抛物型方程的等阶混合有限元[J].四川大学学报(自然科学版),2024,61(4):70-79,10.基金项目
国家自然科学基金(11971337) (11971337)