| 注册
首页|期刊导航|四川大学学报(自然科学版)|一种基于强化学习的软件安全实体关系预测方法

一种基于强化学习的软件安全实体关系预测方法

杨鹏 刘亮 张磊 刘林 李子强 贾凯

四川大学学报(自然科学版)2024,Vol.61Issue(4):163-171,9.
四川大学学报(自然科学版)2024,Vol.61Issue(4):163-171,9.DOI:10.19907/j.0490-6756.2024.042008

一种基于强化学习的软件安全实体关系预测方法

A method for predicting software security entity relationships based on reinforcement learning

杨鹏 1刘亮 1张磊 1刘林 2李子强 3贾凯4

作者信息

  • 1. 四川大学网络空间安全学院,成都 610207
  • 2. 中国信息安全测评中心,北京 100085
  • 3. 长安通信科技有限公司,北京 102209
  • 4. 中征(北京)征信有限责任公司,北京 100044
  • 折叠

摘要

Abstract

Existing methods for entity relation prediction in translation-based software security knowledge graph lack interpretability,while those based on path reasoning exhibit low accuracy.To alleviate this issue,a reinforcement learning-based prediction method is proposed.This method first represents the structural in-formation and descriptive information of the software security knowledge graph as low-dimensional vectors us-ing the TuckER model and SBERT model respectively.Then,it models the entity relation prediction process as a reinforcement learning process,integrating the scores computed by the TuckER model into the reward function of reinforcement learning.The method further employs input entity relation vectors to train the policy network of reinforcement learning.Finally,it utilizes beam search to obtain ranked lists of answer entities and corresponding inference paths.Experimental results demonstrate that this method provides relation paths for all predicted results.In link prediction experiments(h,r,?),the hit@5 is 0.426,hit@10 is 0.797,and MRR is 0.672.In fact prediction experiments,the accuracy is 0.802,and precision is 0.916.In terms of ac-curacy,compared with similar entity relation prediction models,this method shows varying degrees of im-provement.Furthermore,through interpretability analysis experiments,the interpretability of this method is validated.

关键词

软件安全实体关系/强化学习/链接预测/知识图谱/可解释推理

Key words

Software security entity relationship/Reinforcement learning/Link prediction/Knowledge graph/Explainable reasoning

分类

计算机与自动化

引用本文复制引用

杨鹏,刘亮,张磊,刘林,李子强,贾凯..一种基于强化学习的软件安全实体关系预测方法[J].四川大学学报(自然科学版),2024,61(4):163-171,9.

基金项目

四川省科技计划项目资助(2022YFG0171) (2022YFG0171)

专职博士后研发基金资助(SCU221092) (SCU221092)

四川大学学报(自然科学版)

OA北大核心CSTPCD

0490-6756

访问量0
|
下载量0
段落导航相关论文