| 注册
首页|期刊导航|四川大学学报(自然科学版)|基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法

基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法

蒲宝林 张卫华 蒲亦非

四川大学学报(自然科学版)2024,Vol.61Issue(4):203-213,11.
四川大学学报(自然科学版)2024,Vol.61Issue(4):203-213,11.DOI:10.19907/j.0490-6756.2024.043004

基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法

Template matching algorithm for two-stage multi-scale high-precision positioning based on Convolutional neural network and NCC

蒲宝林 1张卫华 1蒲亦非1

作者信息

  • 1. 四川大学计算机学院,成都 610065
  • 折叠

摘要

Abstract

Among the current template matching algorithms,grayscale-based methods have good stability and robustness.However,their efficacy may be hindered by the demands of processing large images and intri-cate templates,necessitating substantial computational resources and time.Additionally,when confronted with significant changes in target scale,grayscale-based template matching algorithms have poor matching performance.For the problem of slow speed of the Normalized Cross-Correlation(NCC)algorithm itself,this paper improves the NCC algorithm,resulting in a 36%reduction in average matching time.To address the challenge of multi-scale,this paper proposes a two-stage multi-scale high-precision positioning template matching algorithm that integrates convolutional neural networks and NCC.During the target detection phase in the first stage,this paper enhances the backbone network and loss function on the basis of the YOLOX al-gorithm,leading to improved algorithm calculation speed and matching success rate.The NCC algorithm in the second stage dynamically adjusts the template size based on the results of the first stage,significantly re-ducing the time required for template generation on a large scale.As a result,the overall matching accuracy surpasses that of traditional grayscale-based template matching algorithms.

关键词

模板匹配/多尺度/卷积神经网络/两阶段/YOLOX

Key words

Template matching/Multi-scale/Convolutional neural network/Two stages/YOLOX

分类

计算机与自动化

引用本文复制引用

蒲宝林,张卫华,蒲亦非..基于卷积神经网络和NCC的两阶段的多尺度高精度定位的模板匹配算法[J].四川大学学报(自然科学版),2024,61(4):203-213,11.

基金项目

国家自然科学基金面上项目(62171303) (62171303)

四川大学学报(自然科学版)

OA北大核心CSTPCD

0490-6756

访问量8
|
下载量0
段落导航相关论文