| 注册
首页|期刊导航|工程科学与技术|基于策略梯度Informer模型的滚动轴承剩余寿命预测

基于策略梯度Informer模型的滚动轴承剩余寿命预测

熊佳豪 李锋 汤宝平 汪永超 罗玲

工程科学与技术2024,Vol.56Issue(4):273-286,14.
工程科学与技术2024,Vol.56Issue(4):273-286,14.DOI:10.12454/j.jsuese.202300136

基于策略梯度Informer模型的滚动轴承剩余寿命预测

Remaining Useful Life Prediction of Rolling Bearings Based on Policy Gradient Informer Model

熊佳豪 1李锋 1汤宝平 2汪永超 1罗玲3

作者信息

  • 1. 四川大学机械工程学院,四川成都 610065
  • 2. 重庆大学机械传动国家重点实验室,重庆 400044
  • 3. 中国测试技术研究院,四川成都 610021
  • 折叠

摘要

Abstract

As a typical encoder-decoder,the transformer architecture has inherent limitations such as secondary time complexity,high memory usage,and a complex model structure;these issues can lead to lower prediction accuracy and decreased computational efficiency when applied to the prediction of the remaining useful life(RUL)of rolling bearings.For this reason,herein,a novel encoder-decoder,the Policy Gradient Inform-er(PG-Informer)model,is proposed and applied to the prediction of the RUL of rolling bearings for the first time.First,in the new encoder-de-coder architecture of PG-Informer,a probabilistic sparse self-attention m echanism is used to replace the original self-attention mechanism of the transformer architecture to improve its nonlinear approximation ability and reduce its time and space complexity.Then,the self-attention distilla-tion operation is used to reduce its number of parameters and their dimensions and enhance the prediction robustness of time series.Moreover,the generative decoder of PG-Informer only needs to decode the decoding input in one step to output the prediction results without dynamic mul-tistep decoding,which improves the prediction speed of time series.Finally,a policy-gradient learning algorithm is constructed to improve the training speed of the PG-Informer parameters.These advantages enable the proposed rolling-bearing RUL-prediction method to obtain higher prediction accuracy,better robustness,and higher computational efficiency.Results for the No.1 rolling bearing at the Center for Intelligent Maintenance Systems of the University of Cincinnati show that the proposed method was able to predict an RUL value of 963 min,representing a prediction error of only 6.50%when compared to the experimental result;compared to the transformer-based RUL prediction method,this repres-ents a higher prediction accuracy,a smaller prediction error,and greater robustness.The proposed method consumed only 132.37 s for RUL pre-diction,shorter than the time taken by the transformer-based RUL-prediction method.These results verify the effectiveness and advantages of the proposed method.

关键词

Informer模型/概率稀疏自注意力机制/策略梯度/滚动轴承/剩余寿命预测

Key words

Informer model/probabilistic sparse self-attention mechanism/policy gradient/rolling bearing/remaining useful life prediction

分类

机械制造

引用本文复制引用

熊佳豪,李锋,汤宝平,汪永超,罗玲..基于策略梯度Informer模型的滚动轴承剩余寿命预测[J].工程科学与技术,2024,56(4):273-286,14.

基金项目

四川省中国制造2025四川行动资金项目计划(2019CDZG-22) (2019CDZG-22)

机械传动国家重点实验室开放基金资助项目(SKLMT-KFKT-201718) (SKLMT-KFKT-201718)

中央高校基本科研业务费(2022CDZG-12) (2022CDZG-12)

工程科学与技术

OA北大核心CSTPCD

2096-3246

访问量0
|
下载量0
段落导航相关论文