|国家科技期刊平台
首页|期刊导航|工程科学与技术|基于策略梯度Informer模型的滚动轴承剩余寿命预测

基于策略梯度Informer模型的滚动轴承剩余寿命预测OA北大核心CSTPCD

Remaining Useful Life Prediction of Rolling Bearings Based on Policy Gradient Informer Model

中文摘要英文摘要

典型的编码器-解码器——Transformer存在二次时间复杂度、高内存使用及模型结构复杂等固有限制,造成Transformer用于滚动轴承剩余寿命(RUL)预测会表现出较低预测精度和较低计算效率的问题.为此,提出一种新型编解码器——策略梯度Informer(PG-Informer)模型,并将其应用于滚动轴承RUL预测.首先,在PG-In-former的新型编解码器体系结构 Informer中设计了概率稀疏自注意力(PSSA)机制替代Transformer中原有的自注意力机制,以提高非线性逼近能力并减少时间和空间复杂度;然后,PG-Informer采用自注意力蒸馏(SAD)操作减少参数维度和参数量,并提高了对时间序列的预测鲁棒性;此外,PG-Informer的生成式解码器对解码输入进行一步解码输出预测结果,无需动态多步解码,提升了对时间序列的预测速度;最后,构造了策略梯度学习算法来提高对PG-Informer参数的训练速度.PG-Informer的以上优势使所提出的基于PG-Informer模型的滚动轴承RUL预测方法可以获得较高的预测精度、较好的鲁棒性和较高的计算效率.对辛辛那提大学智能维护系统中心的1号滚动轴承的RUL预测实验结果表明,所提出方法预测得到的RUL值为963 min,其RUL预测误差仅为6.50%,比基于Transformer的RUL预测方法预测精度更高、预测误差更小、鲁棒性更好;所提出方法所耗费的RUL预测时间仅为132.37 s,比基于Transformer的RUL预测方法的预测时间更短.以上实验结果验证了所提出方法的有效性.

As a typical encoder-decoder,the transformer architecture has inherent limitations such as secondary time complexity,high memory usage,and a complex model structure;these issues can lead to lower prediction accuracy and decreased computational efficiency when applied to the prediction of the remaining useful life(RUL)of rolling bearings.For this reason,herein,a novel encoder-decoder,the Policy Gradient Inform-er(PG-Informer)model,is proposed and applied to the prediction of the RUL of rolling bearings for the first time.First,in the new encoder-de-coder architecture of PG-Informer,a probabilistic sparse self-attention m echanism is used to replace the original self-attention mechanism of the transformer architecture to improve its nonlinear approximation ability and reduce its time and space complexity.Then,the self-attention distilla-tion operation is used to reduce its number of parameters and their dimensions and enhance the prediction robustness of time series.Moreover,the generative decoder of PG-Informer only needs to decode the decoding input in one step to output the prediction results without dynamic mul-tistep decoding,which improves the prediction speed of time series.Finally,a policy-gradient learning algorithm is constructed to improve the training speed of the PG-Informer parameters.These advantages enable the proposed rolling-bearing RUL-prediction method to obtain higher prediction accuracy,better robustness,and higher computational efficiency.Results for the No.1 rolling bearing at the Center for Intelligent Maintenance Systems of the University of Cincinnati show that the proposed method was able to predict an RUL value of 963 min,representing a prediction error of only 6.50%when compared to the experimental result;compared to the transformer-based RUL prediction method,this repres-ents a higher prediction accuracy,a smaller prediction error,and greater robustness.The proposed method consumed only 132.37 s for RUL pre-diction,shorter than the time taken by the transformer-based RUL-prediction method.These results verify the effectiveness and advantages of the proposed method.

熊佳豪;李锋;汤宝平;汪永超;罗玲

四川大学机械工程学院,四川成都 610065重庆大学机械传动国家重点实验室,重庆 400044中国测试技术研究院,四川成都 610021

机械工程

Informer模型概率稀疏自注意力机制策略梯度滚动轴承剩余寿命预测

Informer modelprobabilistic sparse self-attention mechanismpolicy gradientrolling bearingremaining useful life prediction

《工程科学与技术》 2024 (004)

273-286 / 14

四川省中国制造2025四川行动资金项目计划(2019CDZG-22);机械传动国家重点实验室开放基金资助项目(SKLMT-KFKT-201718);中央高校基本科研业务费(2022CDZG-12)

10.12454/j.jsuese.202300136

评论