| 注册
首页|期刊导航|山东电力技术|基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测

基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测

陈晓华 吴杰康 张勋祥 龙泳丞 王志平

山东电力技术2024,Vol.51Issue(7):1-9,9.
山东电力技术2024,Vol.51Issue(7):1-9,9.DOI:10.20097/j.cnki.issn1007-9904.2024.07.001

基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测

Electric Vehicle Charging Load Short-term Prediction Based on Generalized Regression Neural Network Optimized by Pelican Optimization Algorithm

陈晓华 1吴杰康 2张勋祥 2龙泳丞 2王志平3

作者信息

  • 1. 广东电网有限责任公司湛江供电局,广东 湛江 524005||广东工业大学自动化学院,广东 广州 510006||东莞理工学院电子工程与智能化学院,广东 东莞 523808
  • 2. 广东工业大学自动化学院,广东 广州 510006
  • 3. 东莞理工学院电子工程与智能化学院,广东 东莞 523808
  • 折叠

摘要

Abstract

To solve the problem of insufficient prediction accuracy of electric vehicle charging load,a combined prediction method combining complementary ensemble empirical mode decomposition and pelican optimization algorithm to optimize generalized regression neural network was proposed.Firstly,the time series of electric vehicle charging load was decomposed into multiple intrinsic mode function components and a residual component by using complementary ensemble empirical mode decomposition.Then,considering that the decomposed intrinsic mode components are prone to redundant information,sample entropy was used to add and reconstruct the decomposed intrinsic mode components with similar values to reduce the degree of redundancy.Finally,considering that the prediction effect of the generalized regression neural network is closely related to the value of the smoothing factor,the pelican optimization algorithm was used to optimize the smoothing factor of the generalized regression neural network,and then the short-term prediction of the electric vehicle charging load was carried out.The simulation results show that the proposed prediction method can effectively improve the prediction accuracy of electric vehicle charging load with high practicability.

关键词

广义回归神经网络/鹈鹕优化算法/电动汽车充电负荷/短期预测/互补集合经验模态分解

Key words

generalized regression neural network/pelican optimization algorithm/electric vehicle charging load/short-term forecast/complementary ensemble empirical mode decomposition

分类

信息技术与安全科学

引用本文复制引用

陈晓华,吴杰康,张勋祥,龙泳丞,王志平..基于鹈鹕优化算法优化广义回归神经网络的电动汽车充电负荷短期预测[J].山东电力技术,2024,51(7):1-9,9.

基金项目

国家自然科学基金项目(50767001). National Natural Science Foundation of China(50767001). (50767001)

山东电力技术

OACSTPCD

1007-9904

访问量0
|
下载量0
段落导航相关论文