| 注册
首页|期刊导航|山东农业大学学报(自然科学版)|基于多时相遥感影像的农安县土壤有机质含量估算

基于多时相遥感影像的农安县土壤有机质含量估算

李华森 张继真 郝航 张月

山东农业大学学报(自然科学版)2024,Vol.55Issue(3):304-313,10.
山东农业大学学报(自然科学版)2024,Vol.55Issue(3):304-313,10.DOI:10.3969/j.issn.1000-2324.2024.03.002

基于多时相遥感影像的农安县土壤有机质含量估算

Estimation of Soil Organic Matter Content in Nongan County Based on Multi-temporal Remote Sensing Images

李华森 1张继真 2郝航 1张月3

作者信息

  • 1. 吉林农业大学资源与环境学院,吉林 长春 130118||吉林省商品粮基地土壤资源可持续利用重点实验室,吉林长春 130118
  • 2. 松辽水利委员会 松辽流域水土保持监测中心站,吉林 长春 130021
  • 3. 吉林农业大学资源与环境学院,吉林 长春 130118||吉林省商品粮基地土壤资源可持续利用重点实验室,吉林长春 130118||秸秆综合利用与黑土地保护教育部重点实验室,吉林 长春 130118
  • 折叠

摘要

Abstract

Accurate acquisition of farmland soil carbon storage is of great significance for ensuring national food security and addressing climate change.Soil Organic Matter(SOM)is an important part of soil carbon pool.The accuracy of SOM estimation using remote sensing images is affected by single-phase and multi-temporal images,and it is not clear that how many images would be optimal to achieve the best performance for SOM estimation.This study took Nongan County,Changchun City,Jilin Province as the research area,and used Landsat 8 remote sensing images from 2013 to 2018 as the data source.Normalized Difference Vegetation Index(NDVI),Ratio Vegetation Index(RVI)and Soil Organic Carbon index(SOCI)were selected as indicators,and other spectral indices,topographic factors such as elevation,slope,slope direction and Topographic Wetness Index(TWI)were extracted.The farmland management measures such as grain production and fertilizer application were also employed for SOM estimation.SOM estimation model was constructed by using the random forest algorithm with a variety of indicators as input variables.The results show that compared with the indicators extracted from single phase satellite images,multi-temporal satellite images can make better use of multi-temporal image information,and the accuracy of SOM estimation is higher.With the increase of the employed image numbers,the improvement of model accuracy was marginal.In this study,the period of data used is 3 years,and the inversion accuracy will remain basically unchanged with the subsequent increase in the number of images used.The accuracy of model validation set R2 and RMSE for SOM inversion using 3-year image is 0.682 and 3.152 g/kg respectively.The results of this study not only have important significance for applying multi-temporal remote sensing image to SOM accurate estimation,but also have important significance for improving farmland soil quality and agricultural sustainable development.

关键词

土壤有机质/多光谱影像/多时相/随机森林/贡献率

Key words

Soil organic matter/multispectral image/multi-temporal/random forest/contribution rate

分类

农业科技

引用本文复制引用

李华森,张继真,郝航,张月..基于多时相遥感影像的农安县土壤有机质含量估算[J].山东农业大学学报(自然科学版),2024,55(3):304-313,10.

基金项目

国家自然科学基金青年基金项目(42301074) (42301074)

吉林省自然科学基金面上项目(20240101041JC) (20240101041JC)

国家重点研发计划项目(2021YFD1500800) (2021YFD1500800)

中国科学院战略性先导科技专项课题(XDA28080500) (XDA28080500)

山东农业大学学报(自然科学版)

OA北大核心CSTPCD

1000-2324

访问量0
|
下载量0
段落导航相关论文