|国家科技期刊平台
首页|期刊导航|山东农业大学学报(自然科学版)|基于随机森林—贝叶斯优化的设施黄瓜生长模型研究

基于随机森林—贝叶斯优化的设施黄瓜生长模型研究OA北大核心CSTPCD

Growth Model of Greenhouse Cucumber Based on Random Forest Bayesian Optimization

中文摘要英文摘要

为解决当前设施黄瓜生产水平不高,设施环境难以精准调控、智能化应用不足等问题,本研究基于山东农业大学科技创新园园艺实验站日光温室内的环境数据和黄瓜生长数据,采用随机森林-贝叶斯优化算法(RF-BO)构建设施黄瓜定植期、伸蔓期、初花期及采收期生长模拟模型,并与随机森林(RF)算法建立的生长模型进行对比分析,结果表明:基于RF-BO构建的设施黄瓜生长模型在设施黄瓜各发育期的模拟效果均优于RF算法构建的设施黄瓜生长模型,各发育期生长模型的决定系数R2均在0.9以上,均方根误差RMSE范围在0.121~0.317之间,平均绝对误差MAE范围在0.096~0.221之间,可较为准确模拟设施黄瓜的生长动态过程.本研究所构建的设施黄瓜生长模型亦可为其他园艺蔬菜或作物的生长预测提供参考,从而为环境精准调控农业生产提供更加科学、可行的决策依据.

To solve the low production level of greenhouse cucumber,difficulty in precise regulation of greenhouse environment,and insufficient intelligent application,this study is based on environmental data and cucumber growth data in the greenhouse of Shandong Agricultural University Science and Technology Innovation Park Horticulture Experiment Station.Random Forest Bayesian Optimization Algorithm(RF-BO)is used to construct growth simulation models for greenhouse cucumber during the planting period,vine extension period,initial flowering period,and harvesting period,and compared with the growth model established by Random Forest(RF)algorithm.The results show that the simulation effect of the greenhouse cucumber growth model based on RF-BO is better than that of the greenhouse cucumber growth model constructed by RF algorithm in each development stage.The determination coefficient R2 of the growth models in each development stage is above 0.9.The root error RMSE range is between 0.121 and 0.317,and the average absolute error MAE range is between 0.096 and 0.221,which can accurately simulate the growth dynamics of greenhouse cucumbers.The greenhouse cucumber growth model constructed by this research institute also provides reference for the growth prediction of other horticultural vegetables or crops,thereby providing more scientific and feasible decision-making basis for precise environmental regulation and agricultural production.

杨合飞;李杰;于双;吴勇;柳平增;张艳

山东农业大学信息科学与工程学院,山东泰安 271018||农业农村部黄淮海智慧农业技术重点实验室,山东泰安 271018||山东农业大学农业大数据研究中心,山东泰安 271018山东水岳检验检测有限公司,山东泰安 271018山东勇冠农业科技发展有限公司,山东菏泽 274900

园艺学与植物营养学

设施黄瓜生长模型RF-BO算法

Greenhouse cucumbergrowth modelRF-BO

《山东农业大学学报(自然科学版)》 2024 (003)

314-321 / 8

山东省重点研发计划(乡村振兴科技创新提振行动计划)项目(2023TZXD033);中央引导地方科技发展专项资金项目(YDZX2022073)

10.3969/j.issn.1000-2324.2024.03.003

评论