|国家科技期刊平台
首页|期刊导航|山东农业大学学报(自然科学版)|基于EBP-YOLOv8的葡萄叶病害检测与识别方法研究

基于EBP-YOLOv8的葡萄叶病害检测与识别方法研究OA北大核心CSTPCD

Detection and Identification Method of Grape Leaf Diseases Based on EBP-YOLOv8

中文摘要英文摘要

为提高实际环境中葡萄叶病害检测的准确率,适合视频实时监测、无人机等嵌入式AI应用场景,对YOLOv8目标检测模型从模型结构、轻量化等方面进行改进,构建了EBP-YOLOv8.首先在颈部网络中引入BiFPN结构,加强模型特征层之间的融合,改善对小目标的检测能力;其次使用C2_P来替换颈部网络中的C2f结构,实现模型的轻量化,在降低模型计算量的同时而不影响其精度;然后在特征提取网络中融入EMA注意力机制,提升网络对感兴趣区域的关注,提升模型对复杂背景、相似病斑的识别能力;最后将CIoU损失函数替换为ECIoU损失函数,进一步提升模型的检测性能,使模型能够更好地收敛.EBP-YOLOv8 对比YOLOv8n、Faster-RCNN、RetinaNet、YOLOv8n、YOLOv8s、YOLOv7、YOLOv7-Tiny、YOLOv4-Tiny,mAP分别提升了3.2%、13.87%、3.49%、3.2%、1.3%、5%、4.7%、8.8%,模型大小仅5.3MB.改进后的算法在轻量化及保证实时性的同时有效提高了检测精度,可以为开发葡萄叶病害实时检测边缘系统提供有效参考.

In order to improve the accuracy of grape leaf disease detection in real environments,suitable for real-time video monitoring,UAVs and other embedded AI application scenarios,the YOLOv8 target detection model was improved in terms of model structure,lightweight and so on,and constructed EBP-YOLOv8.Firstly,BiFPN structure is introduced into the neck network to strengthen the fusion between the feature layers of the model and improve the detection ability of small targets.Secondly,C2_P is used to replace the C2f structure in the neck network to realise the lightweight of the model without reducing the accuracy of the model.Then,the EMA attention mechanism is integrated into the feature extraction network to improve the attention of the region of interest and the model to identify complex background and similar disease spots;and finally,the CIOU loss function is replaced by the ECIOU loss function to improve the detection performance of the model and make the model converge better.EBP-YOLOv8 compared with YOLOv8n,Faster-RCNN,RetinaNet,YOLOv8n,YOLOv8s,YOLOv7,YOLOv7-Tiny,YOLOv4-Tiny,the mAP improved by 3.2%,13.87%,3.49%,3.2%,1.3%,5%,4.7%and 8.8%respectively,and the model size is only 5.3MB.The improved algorithm effectively improves the detection accuracy while ensuring the real-time performance of the algorithm,which can provide an effective reference for the development of real-time edge system for vine leaf disease detection.

蔺瑶;曾晏林;刘金涛;李佳骏;李双;董晖;杨毅

云南农业大学大数据学院,云南 昆明 650201

计算机与自动化

葡萄叶病害YOLOv8BiFPNEMA注意力机制轻量化

Grape leaf diseasesYOLOv8BiFPNattention mechanismlightweight

《山东农业大学学报(自然科学版)》 2024 (003)

322-334 / 13

云南省重大科技专项:云果数字化关键技术研发与应用示范(202002AE09001002)

10.3969/j.issn.1000-2324.2024.03.004

评论