| 注册
首页|期刊导航|山东农业大学学报(自然科学版)|基于EBP-YOLOv8的葡萄叶病害检测与识别方法研究

基于EBP-YOLOv8的葡萄叶病害检测与识别方法研究

蔺瑶 曾晏林 刘金涛 李佳骏 李双 董晖 杨毅

山东农业大学学报(自然科学版)2024,Vol.55Issue(3):322-334,13.
山东农业大学学报(自然科学版)2024,Vol.55Issue(3):322-334,13.DOI:10.3969/j.issn.1000-2324.2024.03.004

基于EBP-YOLOv8的葡萄叶病害检测与识别方法研究

Detection and Identification Method of Grape Leaf Diseases Based on EBP-YOLOv8

蔺瑶 1曾晏林 1刘金涛 1李佳骏 1李双 1董晖 1杨毅1

作者信息

  • 1. 云南农业大学大数据学院,云南 昆明 650201
  • 折叠

摘要

Abstract

In order to improve the accuracy of grape leaf disease detection in real environments,suitable for real-time video monitoring,UAVs and other embedded AI application scenarios,the YOLOv8 target detection model was improved in terms of model structure,lightweight and so on,and constructed EBP-YOLOv8.Firstly,BiFPN structure is introduced into the neck network to strengthen the fusion between the feature layers of the model and improve the detection ability of small targets.Secondly,C2_P is used to replace the C2f structure in the neck network to realise the lightweight of the model without reducing the accuracy of the model.Then,the EMA attention mechanism is integrated into the feature extraction network to improve the attention of the region of interest and the model to identify complex background and similar disease spots;and finally,the CIOU loss function is replaced by the ECIOU loss function to improve the detection performance of the model and make the model converge better.EBP-YOLOv8 compared with YOLOv8n,Faster-RCNN,RetinaNet,YOLOv8n,YOLOv8s,YOLOv7,YOLOv7-Tiny,YOLOv4-Tiny,the mAP improved by 3.2%,13.87%,3.49%,3.2%,1.3%,5%,4.7%and 8.8%respectively,and the model size is only 5.3MB.The improved algorithm effectively improves the detection accuracy while ensuring the real-time performance of the algorithm,which can provide an effective reference for the development of real-time edge system for vine leaf disease detection.

关键词

葡萄叶病害/YOLOv8/BiFPN/EMA注意力机制/轻量化

Key words

Grape leaf diseases/YOLOv8/BiFPN/attention mechanism/lightweight

分类

信息技术与安全科学

引用本文复制引用

蔺瑶,曾晏林,刘金涛,李佳骏,李双,董晖,杨毅..基于EBP-YOLOv8的葡萄叶病害检测与识别方法研究[J].山东农业大学学报(自然科学版),2024,55(3):322-334,13.

基金项目

云南省重大科技专项:云果数字化关键技术研发与应用示范(202002AE09001002) (202002AE09001002)

山东农业大学学报(自然科学版)

OA北大核心CSTPCD

1000-2324

访问量0
|
下载量0
段落导航相关论文