基于YOLOv5目标检测的机械臂精准授粉系统设计与试验OA北大核心CSTPCD
Design and Experiment of Precise Pollination System Based on YOLOv5 Target Detection
针对梨花人工授粉劳动强度大、效率低,机械授粉花粉用量大、成本高的问题,本文提出了一种结合YOLO深度目标检测算法和机械臂执行系统实现梨花精准授粉的方案.首先将整个系统拆分为深度相机感知模块、靶标授粉决策模块、机械臂执行模块,提出机械臂授粉的各模块融合技术路线.然后通过对深度相机和YOLOv5目标检测算法的融合,检测系统输出靶标梨花的三维坐标位置.进一步通过坐标转换将不同坐标系下的坐标统一到机械臂基坐标下,实现将梨花的像素坐标值和深度值转化为梨花在基坐标系下的三维坐标.最后试验部分完成机械臂授粉执行并探究了机械臂授粉系统的准确性.结果表明,在试验环境下授粉的绝对误差平均值为3.83 mm.
Aiming at the problems of heavy labor intensity,low efficiency,large amount of pollen and high cost of mechanical pollination,this paper proposed a scheme combining YOLO deep target detection algorithm and robotic arm execution system to achieve precise pollination of pear flowers.Firstly,the whole system is divided into depth camera sensing module,target pollination decision module and robotic arm execution module,and the fusion technology route of each module of robotic arm pollination is proposed.Then,through the fusion of depth camera and YOLOv5 target detection algorithm,the three-dimensional coordinate position of the output target of the system is detected.Further,the coordinates in different coordinate systems are unified to the base coordinate of the robot arm through coordinate conversion,and the pixel coordinate value and depth value of the pear flower are converted to the three-dimensional coordinate of the pear flower in the base coordinate system.Finally,the experiment completes the pollination execution of the robot arm and explores the accuracy of the pollination system of the robot arm.The results show the average absolute error of pollination is 3.83 mm.
丁昊;李小光;王术波
青岛大学自动化学院,山东青岛 266000||青岛大学智能无人系统研究院,山东 青岛 266000
农业工程
梨花授粉靶标梨花识别机械臂控制深度相机
Pear pollinationtarget pear flower identificationmechanical arm controldepth camera
《山东农业大学学报(自然科学版)》 2024 (003)
347-355 / 9
CCF智能汽车分会-百度Apollo产学研共同发展项目资助
评论