一种基于改进ResNet18神经网络的玉米叶片病害识别方法OA北大核心CSTPCD
Maize Leaf Disease Recognition Method Based on Improved ResNet18 Neural Network
为了研究出一种快速、高效的玉米病害识别方法,针对玉米叶片病害识别问题,本文以灰斑病、南方锈病、小斑病、锈病、叶斑等5种常见的玉米叶片病害为研究对象,提出一种基于改进ResNet18神经网络的玉米病害识别方法.通过在ResNet18网络的基础上引入金字塔卷积(Pyramidal Convolution)可以在玉米复杂的生长环境中利用多尺度的特征信息来提高模型对单叶片的识别和定位能力,以有效加快模型的收敛速度并显著提高模型的病害识别准确率;将残差结构的激活函数替换为PReLU(Parametric Rectified Linear Unit)激活函数避免模型训练过程中的神经元死亡.在收集的真实玉米叶片病害数据集上进行的实验表明,与原始ResNet18残差网络相比,本文提出的模型在玉米叶片病害识别的准确率、精确度、召回率、F1 分数分别提升了1.86%、1.78%、1.78%、1.87%;模型的参数尺寸减小了1.85%.该模型可作为一种检测复杂生长环境下玉米叶片病害的有效方法.
In order to develop fast and efficient method for maize leaf disease identification,we proposes a corn disease identification method based on improved ResNet18 neural network using five common maize leaf diseases such as grey spot,southern rust,small spot,rust,and leaf spot as the research object.By introducing Pyramidal Convolution on the basis of ResNet18 network,multi-scale feature information can be used to improve the identification and localization ability of single leaf in the complex growth environment,to effectively accelerate the convergence of the model and significantly improve the disease identification accuracy of the model.The activation function of the residual structure was replaced with the activation function of PReLU(Parametric Rectified Linear Unit)to avoid neuronal death during model training.Experiments on the collected real maize leaf disease dataset show that the accuracy,precision,recall and F1-scores of maize leaf disease identification are improved by 1.86%,1.78%,1.78%and 1.87%compared with the original ResNet18 residual network;The parameter size of the model was reduced by 1.85%.This model can be used as an effective method to detect maize leaf diseases in complex growth environments.
马春悦;郭秀茹;王琛;孙博;王志军
山东农业大学信息科学与工程学院,泰安 271018||山东省苹果技术创新中心,泰安 271018山东农业大学信息科学与工程学院,泰安 271018
计算机与自动化
玉米叶片病害识别ResNet18金字塔卷积PReLU
Maize leavesdisease identificationResNet18pyramid convolutionPReLU
《山东农业大学学报(自然科学版)》 2024 (003)
356-366 / 11
山东省自然科学基金面上项目:基于类重叠视角的类不平衡数据分类方法研究(ZR2023MF098)
评论