基于ResNet18和随机森林的遥感图像复杂场景分类方法OA北大核心CSTPCD
A Complex Scene Classification Method of Remote Sensing Images Based on ResNet18 and Random Forest
复杂场景分类是遥感图像解译的一项重要内容.本文通过优化ResNet18深度残差网络和随机森林,实现了遥感图像复杂场景的高精度分类.首先通过数据扩充将数据库扩充以缓解因训练样本少带来的过拟合问题,然后采用ResNet18深度残差网络自动提取遥感图像场景特征,最后使用随机森林分类器实现复杂场景分类任务并分别在NWPU-RESISC45和UC Merced Land Use数据库上进行了实验.结果表明,本文模型场景分类准确率分别为98.86%和99.17%,与单独使用ResNet18深度残差网络相比,本文模型分类准确率分别提高3.36%和1.71%,相比于其他场景分类方法,本文模型分类准确率分别提高5.23%和1.55%.
Complex scene classification is a crucial aspect of remote sensing image interpretation.This paper achieves high-precision classification of complex scenes in remote sensing images by optimizing the ResNet18 deep residual network and Random Forest.First,data augmentation is used to expand the database,alleviating the overfitting problem caused by the limited number of training samples.Then,the ResNet18 deep residual network is employed to automatically extract scene features from the remote sensing images.Finally,a Random Forest classifier is used to accomplish the complex scene classification task.Experiments were conducted on the NWPU-RESISC45 and UC Merced Land Use databases.The results show that the scene classification accuracies of the proposed model are 98.86%and 99.17%,respectively.Compared to using the ResNet18 deep residual network alone,the proposed model improves classification accuracy by 3.36%and 1.71%,respectively.Moreover,in comparison with other scene classification methods,the proposed model improves classification accuracy by 5.23%and 1.55%,respectively.
彭程;王莉;王安邦;齐涛;王慧;王靖伟
日照市自然资源和规划局,山东日照 276800日照市岚山区发展和改革局,山东日照 276800
计算机与自动化
数据扩充深度残差网络随机森林遥感图像场景分类
Data augmentationdeep residual network(ResNet)Random Forestremote sensing imagesscene classification
《山东农业大学学报(自然科学版)》 2024 (003)
376-384 / 9
评论