|国家科技期刊平台
首页|期刊导航|山东农业大学学报(自然科学版)|基于特征增强的冬小麦冻害精细空间分布遥感提取方法

基于特征增强的冬小麦冻害精细空间分布遥感提取方法OA北大核心CSTPCD

Feature Enhancement-based Remote Sensing Extraction Method for Fine Spatial Distribution of Winter Wheat Frost Damage

中文摘要英文摘要

如何及时、准确地获取大范围内作物冻害空间分布数据,是目前农业领域迫切需要解决的问题.本文根据冻害冬小麦的生长变化特点,提出了基于特征增强的冬小麦冻害精细空间分布遥感提取方法(Winter Wheat Frost Damage Fine Spatial Distribution Extraction Method,WWFDFSDEM),用于从高分辨率遥感影像中提取高质量的冻害空间分布数据.选择冻害发生前后两期高分辨率遥感影像作为数据源,根据正常冬小麦和冻害冬小麦区域的影像特点,确定以红、近红、绿三个通道以及NDVI作为基础特征,充分利用像素级特征的空间相关性来增强特征的细节信息,以交叉熵为基础,加入特征类内差异因子和类间差异因子建立损失函数,用于增强特征的区分能力.选择山东省淄博市高青县为研究区,高分2号遥感影像为数据源,决策树、经典SegNet、RefineNet、ErfNet、UNet作为对比模型开展对比实验,WWFDFSDEM提取结果的精度(94.5%),查准率(90.8%),查全率(91.3%)均优于对比方法,证明了方法在提取冻害精细空间分布方面的有效性.方法能够满足农业生产管理、农业保险等领域提取作物冻害精细空间分布数据的需求.

How to obtain the large-scale fine frost damage spatial distribution of crop timely and accurately is an urgent problem in agricultural field.Based on the characteristics of winter wheat growth changes after frost damage,we proposed a winter wheat frost damage fine spatial distribution extraction method(WWFDFSDEM)to extract fine spatial distribution from high resolution remote sensing imagery.Selected two high-resolution remote sensing images before and after frost damage as data source,based on the characteristics of normal winter wheat and frost damage winter wheat,the three channels of red,near-red and green and NDVI were selected as the basic features;we made full use of the spatial correlation of pixel-level features to enhance the details of features.On the basis of cross entropy,the loss function was established by adding the feature difference factor within each class and between the classes to enhance the distinguishing ability of the feature.Gaoqing County,Zibo City,Shandong Province was selected as the research area,Gaofen-2 remote sensing image was used as the data source,and Decision Tree,SegNet,RefineNet,ErfNet and UNet were used as the comparison models to carry out the comparison experiment.The accuracy(94.5%),precision(90.8%)and recall(91.3%)of the results generated by WWFDFSDEM were superior to the comparison methods,which proved the effectiveness of the method in extracting the fine spatial distribution of frost damage,it can meet the needs of extracting fine spatial distribution of frost damage in agricultural production management,agricultural insurance and other fields.

张景涵;伊立冉;王凯;李钿;李峰;周彬;杨晓霞

山东农业大学信息科学与工程学院,山东泰安 271018山东省气候中心,山东 济南 250031

计算机与自动化

冬小麦冻害空间分布特征增强遥感影像卷积神经网络

Winter wheat frost damagespatial distributionfeature enhancementremote sensing imageryconvolutional neural network

《山东农业大学学报(自然科学版)》 2024 (003)

433-443 / 11

山东省自然科学基金(ZR2021MD097,ZR2020MF130);山东省气象局重点课题(2021sdqxz03);山东省大学生创新创业训练项目(S202310434226)

10.3969/j.issn.1000-2324.2024.03.016

评论