|国家科技期刊平台
首页|期刊导航|水力发电|基于优选地震强度参数的地下倒虹吸结构易损性分析

基于优选地震强度参数的地下倒虹吸结构易损性分析OACSTPCD

Fragility Analysis of Underground Inverted Siphon Structures Based on Preferred Seismic Intensity Measures

中文摘要英文摘要

对水工建筑进行地震易损性分析是研究其抗震性能的有效途径.相比渡槽、大坝等地上水工结构,地下倒虹吸结构的地震易损性研究相对较少.为此,以滇中引水下庄地下倒虹吸结构为研究对象,选取16个标量地震动强度参数,使用IDA法对地下倒虹吸结构开展了土体-结构动力非线性有限元分析.以有效性、实用性、效益性和相关性这4个参数作为评价指标,优选标量IM构建矢量IMs;利用遗传算法(Genetic algorithms,GA)优化多层前馈(Back propagation,BP)神经网络建立了 GA-BP神经网络,以优选矢量IMs作为输入进行训练,通过训练后的神经网络建立了地下倒虹吸结构的易损性曲面.研究结果表明:优选构建的矢量IMs能够更好地反映地下倒虹吸结构的抗震性能,可以降低地震易损性分析70%的计算成本.

Seismic fragility analysis has proven to be an effective way to study the seismic performance of structures.Compared with above-ground hydraulic structures such as ferries and dams,the seismic vulnerability of underground inverted siphon structures had been less studied.Taking the underground inverted siphon structure in Xiazhuang,Yunnan Province as the research object,16 scalar ground vibration intensity measures(IM)are selected and soil-structure dynamic nonlinear finite element calculations are carried out for the underground inverted siphon structure using the IDA method.Four parameters of effectiveness,practicality,efficiency and relevance are used as evaluation indexes to preferably select scalar IM to form vector IMs.A GA-BP neural network is established by optimizing a back propagation(BP)neural network using genetic algorithm(GA),and the preferable vector IMs are used as input for training.The vulnerability surface of the underground inverted siphon structure is established by the trained neural network.The results show that the preferentially composed vector IMs can better respond to the seismic performance of the underground inverted siphon structure,and can reduce the computational cost of seismic susceptibility analysis by 70% for the structure in this paper.

段朝杰;陈荣国;石艳柯;王智磊;门文博;何志佳

中铁七局集团武汉工程有限公司,湖北 武汉 430074华北水利水电大学土木与交通学院,河南 郑州 450045

水利科学

地下倒虹吸易损性分析地震强度参数人工神经网络遗传算法

underground inverted siphonseismic fragility analysisseismic intensity measureartificial neural networkgenetic algorithm

《水力发电》 2024 (008)

28-37 / 10

河南省水利科技攻关项目(GG202333)

评论