| 注册
首页|期刊导航|水力发电学报|土石坝风险等级智能预测分析及模型优化研究

土石坝风险等级智能预测分析及模型优化研究

李炎隆 张雨春 王婷 殷乔刚 刘云贺

水力发电学报2024,Vol.43Issue(7):85-96,12.
水力发电学报2024,Vol.43Issue(7):85-96,12.DOI:10.11660/slfdxb.20240708

土石坝风险等级智能预测分析及模型优化研究

Study on intelligent predictions and analysis of earth-rock dam risk levels as well as model optimization

李炎隆 1张雨春 1王婷 1殷乔刚 1刘云贺1

作者信息

  • 1. 西安理工大学 省部共建西北旱区生态水利国家重点实验室,西安 710048
  • 折叠

摘要

Abstract

Dam failure often causes an enormous loss of life and property and huge environmental damage.Accurate and fast estimation of the risk level of earth-rock dams is of great significance for controlling their failure hazards.This paper develops a fast prediction model of the earth-rock dam risk grade based on GA-LightGBM,using the K-Nearest Neighbor(KNN)algorithm to fill a large amount of missing data in the database,and adopting a Genetic Algorithm(GA)to optimize the hyperparameters of Light Gradient Boosting Machine(LightGBM).The model accuracy is verified using the receiver operating characteristic(ROC)curves,the area under the curve(AUC),and other evaluation indexes;and it is compared with the traditional machine learning model.The results show that this new model has a high accuracy of 89.95%and its AUC value is 0.977,indicating it is better in terms of applicability and accuracy.Analysis of global influencing factors and case studies using Shapley Additive Explanations(SHAP)show the frequency of inspection is one of the most important factors leading to the risk of earth-rock dams.

关键词

风险等级/遗传算法/GA-LightGBM/快速预测模型/SHAP分析

Key words

risk level/genetic algorithm/GA-LightGBM/fast prediction model/SHAP analysis

分类

水利科学

引用本文复制引用

李炎隆,张雨春,王婷,殷乔刚,刘云贺..土石坝风险等级智能预测分析及模型优化研究[J].水力发电学报,2024,43(7):85-96,12.

基金项目

国家自然科学基金重点项目(52039008) (52039008)

国家杰出青年科学基金项目(52125904) (52125904)

水力发电学报

OA北大核心CSTPCD

1003-1243

访问量0
|
下载量0
段落导航相关论文