| 注册
首页|期刊导航|水利学报|基于微震特征参数的秦岭隧洞岩爆实时预测模型

基于微震特征参数的秦岭隧洞岩爆实时预测模型

胡晶 刘慎 陈祖煜

水利学报2024,Vol.55Issue(7):757-767,11.
水利学报2024,Vol.55Issue(7):757-767,11.DOI:10.13243/j.cnki.slxb.20230693

基于微震特征参数的秦岭隧洞岩爆实时预测模型

A real-time rockburst prediction model for Qinling Tunnel based on the characteristic parameters of microseismic monitoring

胡晶 1刘慎 2陈祖煜3

作者信息

  • 1. 中国水利水电科学研究院,北京 100048
  • 2. 浙江大学岩土工程研究所,浙江杭州 310058
  • 3. 中国水利水电科学研究院,北京 100048||浙江大学岩土工程研究所,浙江杭州 310058
  • 折叠

摘要

Abstract

Rockburst is one of the main disasters in the construction of deep earth engineering,and microseismic monitoring is the main method of short-term prediction for rockburst.In order to solve the problem that the short-term prediction of rockburst mainly depends on experience,a database was established consisting of the microseis-mic monitoring and the rockburst record events at Qinling Tunnel of the water diversion project from Hanjiang River to Weihe River.Based on all characteristic parameters during a period,e.g.,energy,position,and magnitude of the micro seismic event,a real-time prediction model for rockburst was established using the convolutional neural network.Besides,the influence of work surface position on rockburst was also considered.According to the train-ing,validation and test results,the model structure,selection of lookback time,prediction time and training ep-och were optimized.The model could reasonably describe the influence of the distribution feature of microseismic and the construction progress on the rockburst probability.Based on the test results,the model can predict the probability of rockburst in the next 48 hours continuously.The accuracy of the prediction is more than 80%,which provides an effective technical way for real-time prediction of rockburst.

关键词

微震监测/岩爆/预测/卷积神经网络/特征参数

Key words

microseismic monitoring/rockburst/prediction/convolutional neural network/characteristic parameter

分类

建筑与水利

引用本文复制引用

胡晶,刘慎,陈祖煜..基于微震特征参数的秦岭隧洞岩爆实时预测模型[J].水利学报,2024,55(7):757-767,11.

基金项目

第七届青年托举工程项目(2021QNRC001) (2021QNRC001)

中国水科院基本科研业务费项目(GE0199A072021) (GE0199A072021)

水利学报

OA北大核心CSTPCD

0559-9350

访问量0
|
下载量0
段落导航相关论文