考虑温度对静止土压力K0系数影响的统一硬化本构模型OA北大核心CSTPCD
Unified hardening constitutive model considering the influence of temperature on K0 coefficient
K0系数是重要的岩土工程参数,研究其影响因素和变化规律对合理确定地基应力状态至关重要.本研究通过试验和理论方法研究了温度对饱和黏性土K0系数的影响.首先,以饱和标准砂-膨润土混合土样为对象,开展不同温度下的侧限压缩试验,获得了K0系数随温度的变化规律,发现正常固结土的K0系数随升温而减小,超固结土的K.系数随升温而轻微增大;其次,推导出K.系数与弹塑性屈服面偏转度之间的定量关系,并将其与温控侧限压缩试验结果结合,获得了屈服面偏转度随温度的变化规律;最后,将屈服面偏转度-温度关系引入统一硬化本构模型理论框架,建立了考虑温度对K0系数影响的饱和黏性土弹塑性本构模型.所提出的模型能够较好地模拟多种类型的室内土力学试验.
The K0 coefficient is an important geotechnical parameter.Investigating its influencing factors and change law is vital for determining ground stress states.The influence of temperature on the K0 coefficient was in-vestigated in this paper using experimental and theoretical methods.Firstly,some confined compression tests at dif-ferent temperatures were conducted on saturated mixture samples of standard sand and bentonite.The change law of the K0 coefficient with temperature was obtained,indicating that the K0 coefficient of normally consolidated soils de-creases but that of overconsolidated soils increases slightly as temperature increases.Secondly,a quantitative rela-tionship between the K0 coefficient and the inclination of the elastoplastic yield surface was derived,which was then combined with the results of the temperature-controlled confined compression test.Thus,the variation of the incli-nation of the yield surface with temperature was obtained.Finally,by introducing the relationship between the in-clination of yield surface and temperature into the theoretical framework of the unified hardening constitutive model,a new elastoplastic constitutive model for saturated clayey soils considering the temperature effect on the K0 coeffi-cient was established,which can well simulate various laboratory mechanical tests.
孔令明;李自广;张海兵
北京建筑大学土木与交通工程学院,北京 102616
土木建筑
黏性土温度K0系数本构模型
clayey soilstemperatureK0 coefficientconstitutive model
《水利学报》 2024 (007)
815-826 / 12
北京市自然科学基金项目(8204057);国家自然科学基金项目(41902284);北京市教委一般项目(KM201910016015)
评论