结合交叉注意力的双通道恶意评论识别方法OA北大核心CSTPCD
Two-channel Malicious Comment Recognition Method Combined with Cross-attention Mechanism
恶意评论识别本质上是一个文本分类的问题.相较传统的文本分类,恶意评论往往伴随着表达方式更微妙且随意的特点,使得传统文本分类网络识别精度不高、识别效果不好,无法达到需求.为解决上述问题,本文提出一种结合交叉注意力机制的双通道文本分类网络(Two-channel text classification network combined with cross-at-tention mechanism,CA2TC).该模型同时使用图卷积神经网络(Graph Convolutional Network,GCN)和双向长短期记忆网络(Bidirectional Long Short-term Memory,BiLSTM)获得两种不同的文本上下文特征信息,两种不同的特征信息可以从多个角度更好表达文本的含义.提出的交叉注意力机制对双通道提取的文本特征进行精炼并融合.最后将精炼特征拼接后经全连接层再送入softmax进行分类.本文采用微博收集的恶意评论数据对提出的方法进行实验验证.实验结果表明,与一些主流的分类模型相比,提出的模型识别效果更优,分类精度较主流分类模型相比提高1.06%至2.89%.CA2TC模型能够充分提取恶意评论文本特征,从而有效识别恶意评论.
The detection of malicious comments is essentially a text classification problem.Compared to typical text classification,malicious comments are often accompanied by more subtle and unpredictable expressions,which results in low identification accura-cy,poor recognition effect,and inability to satisfy demands.To tackle the aforementioned issues,this paper proposes a two-channel text classification network combined with cross-attention mechanism(CA2TC),which employs graph convolutional network(GCN)and bidirectional long short-term memory(BiLSTM)to generate two distinct texts.Contextual feature information,as well as two distinct feature information,may be used to better explain the meaning of the text from numerous viewpoints.The suggested cross-attention approach improves and combines text characteristics gathered from two channels.Finally,the corrected features are concat-enated and transmitted to softmax through the fully connected layer for classification.The malicious comment data acquired from Weibo is utilized in this study to validate the suggested strategy.The experimental results show that,compared to some mainstream classification models,the proposed model has a better recognition effect,with classification accuracy increasing by 1.06%to 2.89%.The CA2TC model can fully extract the text features of malicious comments,leading effectively identify malicious comments.
张琳钰;卢益清
北京信息科技大学 信息管理学院,北京 100192
计算机与自动化
恶意评论识别双通道图卷积神经网络双向长短期记忆网络交叉注意力机制
malicious comment recognitiontwo-channelGCNBiLSTMcross-attention mechanism
《山西大学学报(自然科学版)》 2024 (004)
751-760 / 10
国家自然科学基金(U1936111)
评论