| 注册
首页|期刊导航|山西大学学报(自然科学版)|基于注意力图池化的图卷积网络癫痫发作预测

基于注意力图池化的图卷积网络癫痫发作预测

张倩云 乔晓艳

山西大学学报(自然科学版)2024,Vol.47Issue(4):767-775,9.
山西大学学报(自然科学版)2024,Vol.47Issue(4):767-775,9.DOI:10.13451/j.sxu.ns.2023083

基于注意力图池化的图卷积网络癫痫发作预测

Epileptic Seizure Prediction by Graph Convolutional Network Based on Graph Pooling of Attention

张倩云 1乔晓艳1

作者信息

  • 1. 山西大学 物理电子工程学院,山西 太原 030006
  • 折叠

摘要

Abstract

Timely and accurate prediction of epileptic seizures can take intervention measures to prevent from accidental injury be-fore epileptic seizures.In order to improve the accuracy of epileptic seizure prediction,a graph convolution neural network model,based on graph pooling of attention,is proposed for epileptic seizure prediction.The multi-lead Electroencephalography(EEG)data were converted into a graph structure,and an improved graph convolution neural network model was designed.By adding graph pooling of attention,important node information was screened to avoid feature redundancy and improve the learning ability and ro-bustness of the model.On this basis,the effects of different EEG rhythm,sliding time window and prediction duration on epilepsy prediction were analyzed.The simulation results show that the accuracy,recall rate,specificity and F1 value of the prediction model can achieve separately 97.03%,95.89%,98.16%and 96.12%for 5 minutes before seizures,by using the sliding step size of 0.5 s in the 4 s time window.Therefore,this model can improve the prediction accuracy of epileptic seizure and can be easily generalized.

关键词

癫痫发作预测/脑电信号/图卷积神经网络/注意力图池化

Key words

prediction of epileptic seizure/EEG signal/graph convolution neural network/graph pooling of attention

分类

信息技术与安全科学

引用本文复制引用

张倩云,乔晓艳..基于注意力图池化的图卷积网络癫痫发作预测[J].山西大学学报(自然科学版),2024,47(4):767-775,9.

基金项目

山西省回国留学人员科研项目(2020-009) (2020-009)

山西大学学报(自然科学版)

OA北大核心CSTPCD

0253-2395

访问量0
|
下载量0
段落导航相关论文