Sylvester连分数展式中若干例外集的Hausdorff维数OACSTPCD
HAUSDORFF DIMENSIONS OF CERTAIN SETS IN TERMS OF THE SYLVESTER CONTINUED FRACTION EXPANSIONS
对于任意实数x ∈(0,1],记x=[d1,d2,…]为x的Sylvester连分数展式,令ψ(n)为N上的正函数,本文研究了集合A(ψ):A(ψ)={x∈(0,1]:limn→∞ logdn(x)/ψ(n)=1}的Hausdorff维数.通过构造覆盖和合适的Cantor型子集,我们得到了该集合的精确维数为dimH A(ψ)=liminfn→∞ ψ(1)+ψ(2)+…+ψ(n)/ψ(n+1).同时,本文还考虑了 Sylvester连分数展式的部分商满足logdn(x)/ψ(n)的极限是零或无穷时的集合的Hausdorff 维数.
For x ∈(0,1],let x=[d1,d2,…]be its Sylvester continued fraction expansions,we calculate the Hausdorff dimension of the set A(ψ)defined in terms of the Sylvester continued fraction expansions as A(ψ)={x∈(0,1]:limn→∞ logdn(x)/ψ(n)=1},where ψ(n)is a positive function defined on N.By constructing the covering and a suitable subset of Cantor,we get the exact Hausdorff dimension of the set as dim H A(ψ)=lim infn→∞ ψ(1)+ψ(2)+…+ψ(n)/ψ(n+1)At the same time,we also calculate the Hausdorff dimension of the set of points with limn→∞logdn(x)/ψ(n)=0 or ∞.
廖旭
重庆师范大学数学科学学院,重庆 401331
数学
Sylvester连分数Hausdorff维数增长速度
Sylvester continued fraction expansionsHausdorff dimensiongrowth rate
《数学杂志》 2024 (004)
343-357 / 15
重庆市教育委员会科学技术研究项目资助(KJQN202100528);重庆市自然科学基金资助(CSTB2022NSCQ-MSX1255).
评论