|国家科技期刊平台
首页|期刊导航|数学杂志|基于有限域上三维非全迷向子空间的辛图

基于有限域上三维非全迷向子空间的辛图OACSTPCD

THE SYMPLECTIC GRAPH CONSTRUCTED BY 3-DIMENSIONAL SYMPLECTIC NON-TOTALLY ISOTROPIC SUBSPACES OVER FINITE FIELDS

中文摘要英文摘要

本文以定义在有限域Fq上的2v维辛空间F(2v)q中的三维非全迷向子空间为顶点集构造了一类辛图,记为Г.Г的两个顶点V1和V2相邻接当且仅当V1∩V2是F(2v)q的一个二维子空间.本文研究了该图的基本性质,计算了图的参数,得到当v=2时,Г是一个完全图K(q+1)(q2+1);当v=3时,该图是一个8-Deza图;当v≥4时,该图是一个9-Deza图,由此进一步得到当v ≥ 3时其直径和围长都是3,并且团数是q2v-2-1/q-1.

In this paper,we construct a kind of symplectic graph denoted by Γ with the vertex set consisting of 3-dimensional non-totally isotropic subspaces in the 2v-dimensional symplectic space F(2v)q defined over the finite field Fq.Two vertices V1 and V2 of Γ are adjacent if and only if V1 ∩ V2 is a 2-dimensional subspace of F(2v)q.We investigate the basic properties of this graph and compute its parameters.We obtain that when v=2,the graph is a complete graphK(q+1)(q2+1);when v=3,it is an 8-Deza graph;and when v ≥ 4,it is a 9-Deza graph.Furthermore,it is shown that the diameter and girth of the graph are both 3 when v ≥ 3,and the clique number is q2v-2-1/q-1.

霍丽君;吴杨

重庆理工大学理学院,重庆 400054

数学

有限域非全迷向子空间辛图d-Deza图

finite fieldnon-totally isotropic subspacesymplectic graphd-Deza graph

《数学杂志》 2024 (004)

369-376 / 8

重庆市自然科学基金项目(CSTB2022NSCQ-MSX0831,cstc2021jcyj-msxmX0575);重庆理工大学研究生教育高质量发展行动计划资助成果(gzljg2022319);重庆理工大学自科基金培育项目(2022PYZ023);重庆理工大学教育教学改革项目(2023YB115,2024YB08).

评论