数学杂志2024,Vol.44Issue(4):369-376,8.
基于有限域上三维非全迷向子空间的辛图
THE SYMPLECTIC GRAPH CONSTRUCTED BY 3-DIMENSIONAL SYMPLECTIC NON-TOTALLY ISOTROPIC SUBSPACES OVER FINITE FIELDS
摘要
Abstract
In this paper,we construct a kind of symplectic graph denoted by Γ with the vertex set consisting of 3-dimensional non-totally isotropic subspaces in the 2v-dimensional symplectic space F(2v)q defined over the finite field Fq.Two vertices V1 and V2 of Γ are adjacent if and only if V1 ∩ V2 is a 2-dimensional subspace of F(2v)q.We investigate the basic properties of this graph and compute its parameters.We obtain that when v=2,the graph is a complete graphK(q+1)(q2+1);when v=3,it is an 8-Deza graph;and when v ≥ 4,it is a 9-Deza graph.Furthermore,it is shown that the diameter and girth of the graph are both 3 when v ≥ 3,and the clique number is q2v-2-1/q-1.关键词
有限域/非全迷向子空间/辛图/d-Deza图Key words
finite field/non-totally isotropic subspace/symplectic graph/d-Deza graph分类
数理科学引用本文复制引用
霍丽君,吴杨..基于有限域上三维非全迷向子空间的辛图[J].数学杂志,2024,44(4):369-376,8.基金项目
重庆市自然科学基金项目(CSTB2022NSCQ-MSX0831,cstc2021jcyj-msxmX0575) (CSTB2022NSCQ-MSX0831,cstc2021jcyj-msxmX0575)
重庆理工大学研究生教育高质量发展行动计划资助成果(gzljg2022319) (gzljg2022319)
重庆理工大学自科基金培育项目(2022PYZ023) (2022PYZ023)
重庆理工大学教育教学改革项目(2023YB115,2024YB08). (2023YB115,2024YB08)