中国石油大学学报(自然科学版)2024,Vol.48Issue(4):57-67,11.DOI:10.3969/j.issn.1673-5005.2024.04.006
卷积神经网络在AVA反演应用中影响因素研究
Research on influencing factors of deep learning in AVA inversion application
摘要
Abstract
Starting from the AVA(amplitude-versus-angle)inversion based on convolutional neural networks(CNNs),by generating extensive datasets for network training,we analyze the effects of different hyperparameters on prediction outcomes,identify the optimal settings,and establish guidelines for hyperparameter adjustment.By comparing the prediction perform-ance of three distinct CNN models,we identify the optimal network architecture for prestack parameter inversion,and propose a workflow for elastic parameter prediction using CNN applied to pre-stack angle-domain gathers.Numerical examples dem-onstrate that the prediction accuracy of elastic parameters is the highest when using the constructed training data set,the se-lected CNN architecture,and the optimized hyperparameters.关键词
叠前反演/训练数据集/超参数设置/卷积神经网络Key words
prestack inversion/training data set/hyperparameter tuning/convolutional neural network分类
天文与地球科学引用本文复制引用
李振春,孙加星,杨继东,黄建平,于由财,徐洁..卷积神经网络在AVA反演应用中影响因素研究[J].中国石油大学学报(自然科学版),2024,48(4):57-67,11.基金项目
中石油重大科技合作项目(ZD2019-183-003) (ZD2019-183-003)
国家自然科学基金项目(41774133,42074133) (41774133,42074133)
国家重点研发计划(2019YFC0605503C) (2019YFC0605503C)
"十四五"重大项目(2021QNLM020001) (2021QNLM020001)
优秀青年科学基金项目(41922028) (41922028)
国家创新群体项目(41821002) (41821002)