| 注册
首页|期刊导航|石油物探|基于多模态神经网络的微地震事件检测

基于多模态神经网络的微地震事件检测

张岩 刘小秋 王海潮 宋利伟 董宏丽

石油物探2024,Vol.63Issue(4):790-806,17.
石油物探2024,Vol.63Issue(4):790-806,17.DOI:10.12431/issn.1000-1441.2024.63.04.008

基于多模态神经网络的微地震事件检测

Microseismic event detection based on multi-modal neural network

张岩 1刘小秋 2王海潮 2宋利伟 3董宏丽4

作者信息

  • 1. 东北石油大学计算机与信息技术学院,黑龙江大庆 163318||东北石油大学人工智能能源研究院,黑龙江大庆 163318
  • 2. 东北石油大学计算机与信息技术学院,黑龙江大庆 163318
  • 3. 东北石油大学物理与电子工程学院,黑龙江大庆 163318
  • 4. 东北石油大学人工智能能源研究院,黑龙江大庆 163318
  • 折叠

摘要

Abstract

A multimodal neural network-based microseismic event detection method is proposed to address the problem that the time series of effective microseismic signals has severe limitations.First,the multichannel time-domain mode with the target chan-nel as the axis symmetry is established using gather data correlation,and the S-domain modal characteristics are obtained by using time-frequency analysis for the target channel.Then,the neural network for microseismic event detection is designed by combining the time-domain mode and S-domain mode.Multimodal features are synthesized for training and learning to improve the accuracy of detection.Finally,method validation is performed through the analyses of synthetic low-SNR and small-amplitude data and actu-al oil-well microseismic events.The results showed that our method could detect low-SNR and weak microseismic signals effective-ly.Compared with SVM,CNN,and supervised machine learning,our method has improved anti-noise performance and accuracy.

关键词

微地震/事件检测/拉普拉斯变换/多模态网络/时频谱/道集数据相关性

Key words

microseismic/event detection/Laplace transform/multi-modal network/time-frequency spectrum/gather data correla-tion

分类

天文与地球科学

引用本文复制引用

张岩,刘小秋,王海潮,宋利伟,董宏丽..基于多模态神经网络的微地震事件检测[J].石油物探,2024,63(4):790-806,17.

基金项目

东北石油大学特色科研团队项目"智慧油田信息处理创新团队"(2023TSTD-04)资助.This research is financially supported by the Northeast Petroleum University's Characteristic Research Team Project(Grant No.2023TSTD-04). (2023TSTD-04)

石油物探

OA北大核心CSTPCD

1000-1441

访问量0
|
下载量0
段落导航相关论文