| 注册
首页|期刊导航|同济大学学报(自然科学版)|基于机器学习的超高性能混凝土成本优化

基于机器学习的超高性能混凝土成本优化

周帅 贾跃 李凯 李紫剑 巫晓雪 彭海游 张成明 韩凯航 王冲

同济大学学报(自然科学版)2024,Vol.52Issue(7):1018-1023,6.
同济大学学报(自然科学版)2024,Vol.52Issue(7):1018-1023,6.DOI:10.11908/j.issn.0253-374x.23419

基于机器学习的超高性能混凝土成本优化

Mix Proportion Optimization of Ultra-High Performance Concrete Based on Machine Learning

周帅 1贾跃 1李凯 1李紫剑 1巫晓雪 2彭海游 3张成明 1韩凯航 4王冲1

作者信息

  • 1. 重庆大学 材料科学与工程学院,重庆 400045
  • 2. 同济大学 材料科学与工程学院,上海 200092
  • 3. 重庆大学 土木工程学院,重庆 400045
  • 4. 深圳大学 土木与交通工程学院,广东 深圳 518061
  • 折叠

摘要

Abstract

In recent years,ultra-high performance concrete(UHPC)has become one of the hot research directions due to its excellent mechanical properties and durability,but its high cost has always limited its application in engineering.In order to reduce the cost of UHPC,this paper proposes a method based on machine learning to optimize the mix proportion of UHPC.In order to achieve this goal,the prediction model of a 28-day compressive strength and expansion of UHPC was first established by using artificial neural network(ANN),which was taken as the constraint condition,taking into account the constraints of UHPC component content,component proportion and absolute volume,The cost of UHPC was reduced by using genetic algorithm(GA).The research results show that the error between the prediction results of ANN model and the experimental results is within 10%,which has good prediction accuracy.The cost of UHPC optimized by GA is reduced to $838.8,which is lower than the cost of $1000 mentioned in the literature.

关键词

超高性能混凝土(UHPC)/机器学习/人工神经网络(ANN)/遗传算法/成本

Key words

ultra-high performance concrete(UHPC)/machine learning/artificial neural network(ANN)/genetic algorithm/cost

分类

建筑与水利

引用本文复制引用

周帅,贾跃,李凯,李紫剑,巫晓雪,彭海游,张成明,韩凯航,王冲..基于机器学习的超高性能混凝土成本优化[J].同济大学学报(自然科学版),2024,52(7):1018-1023,6.

基金项目

国家自然科学基金(52002040),重庆市地质灾害防治中心(KJ2021050),宁夏回族自治区重点研发计划项目(2023BDE02004) (52002040)

同济大学学报(自然科学版)

OA北大核心CSTPCD

0253-374X

访问量0
|
下载量0
段落导航相关论文