| 注册
首页|期刊导航|天津工业大学学报|基于RT-YOLO-V5的芯片外观缺陷检测

基于RT-YOLO-V5的芯片外观缺陷检测

郭翠娟 王妍 刘净月 席雨 徐伟 王坦

天津工业大学学报2024,Vol.43Issue(3):50-57,8.
天津工业大学学报2024,Vol.43Issue(3):50-57,8.DOI:10.3969/j.issn.1671-024x.2024.03.007

基于RT-YOLO-V5的芯片外观缺陷检测

Chip appearance defect detection based on RT-YOLO-V5

郭翠娟 1王妍 1刘净月 2席雨 2徐伟 1王坦2

作者信息

  • 1. 天津工业大学 电子与信息工程学院,天津 300387||天津工业大学天津光电探测技术与系统重点实验室,天津 300387
  • 2. 中国航天科工防御技术研究院微电子器件可靠性实验室研究与试验中心,北京 100854
  • 折叠

摘要

Abstract

Aiming at the problems caused by traditional manual chip detection,with low efficiency,excessive dependence on human operation and high misdetection rate,an RT-YOLO-V5 detection method was proposed to detect chip appearance defects based on the Res-CBS module and an additional Tiny-scale detection layer.First of all,an image acquisition system was built,and a chip appearance defect detection dataset was produced.Due to the de-fects are irregular in shape,inconsistent in size and uncertain in location,the performance of YOLO-V5 network can no longer meet the detection requirements.A short connection was added to the CBS module,fusing the fea-ture information of input and output,reducing the information loss and optimizing the inference speed.In addi-tion,a tiny-scale detection layer is added as well,to improve the feature extraction capability of the model for tiny targets.The experimental results show that using the improved network for chip appearance defect detection,mAP reached 95.5%,which was a 5.7%improvement compared to the original network.In addition,the im-proved RT-YOLO-V5 has gained some improvement in both Box_loss and the accuracy of tiny-scale defect de-tection.

关键词

YOLO-V5/芯片/缺陷检测/特征融合/卷积神经网络

Key words

YOLO-V5/chip/defect detecting/feature fusion/convolutional neural network

分类

信息技术与安全科学

引用本文复制引用

郭翠娟,王妍,刘净月,席雨,徐伟,王坦..基于RT-YOLO-V5的芯片外观缺陷检测[J].天津工业大学学报,2024,43(3):50-57,8.

基金项目

中国博士后科学基金面上基金资助项目(2019M661013) (2019M661013)

天津市科技计划资助项目(20YDTPJC01090 ()

22YDTPJC00090) ()

天津工业大学学报

OA北大核心CSTPCD

1671-024X

访问量0
|
下载量0
段落导航相关论文