| 注册
首页|期刊导航|天津工业大学学报|基于图结构增强的图神经网络方法

基于图结构增强的图神经网络方法

张芳 单万锦 王雯

天津工业大学学报2024,Vol.43Issue(3):58-65,8.
天津工业大学学报2024,Vol.43Issue(3):58-65,8.DOI:10.3969/j.issn.1671-024x.2024.03.008

基于图结构增强的图神经网络方法

Graph neural network method based on graph structure enhancement

张芳 1单万锦 2王雯1

作者信息

  • 1. 天津工业大学生命科学学院,天津 300387||天津工业大学天津市光电检测技术与系统重点实验室,天津 300387
  • 2. 天津工业大学电子与信息工程学院,天津 300387
  • 折叠

摘要

Abstract

In response to the problem of sudden performance degradation in graph convolutional networks(GCNs)facing low homogeneity graph structures,a novel graph structure enhancement method is proposed for learning im-proved graph node representations.Firstly,the node information is propagated and aggregated by messages to obtain an initial representation of the nodes.Then the similarity metric of the node representation is calculated to obtain the homogeneous structure of the graph.Finally,the original structure of the graph and the homogeneous structure are fused for node information transfer to obtain the node representation for downstream tasks.The re-sults show that the proposed algorithm outperforms the comparison algorithm in several metrics of node classifica-tion on six publicly available datasets,especially on the four datasets with low homogeneity,the ACC scores of the proposed algorithm exceed the highest benchmark by 5.53%,6.87%,3.08%and 4.00%,and the Fl values exceed the highest benchmark by 5.75%,8.06%,6.46%and 5.61%,respectively,obtaining superior perfor-mance well above the benchmark,indicating that the proposed method successfully improves the structure of graph data and verifies the effectiveness of the algorithm for graph structure optimization.

关键词

图结构增强/相似性度量/图卷积网络/节点分类

Key words

graph structure enhancement/similarity measure/graph convolution network/node classification

分类

计算机与自动化

引用本文复制引用

张芳,单万锦,王雯..基于图结构增强的图神经网络方法[J].天津工业大学学报,2024,43(3):58-65,8.

基金项目

国家自然科学基金资助项目(61702296) (61702296)

天津工业大学学报

OA北大核心CSTPCD

1671-024X

访问量0
|
下载量0
段落导航相关论文