| 注册
首页|期刊导航|太原理工大学学报|改进GAN模型在基站流量预测及5G节能中的应用

改进GAN模型在基站流量预测及5G节能中的应用

王素英 贾海蓉 申陈宁 吴永强 刘君

太原理工大学学报2024,Vol.55Issue(4):743-750,8.
太原理工大学学报2024,Vol.55Issue(4):743-750,8.DOI:10.16355/j.tyut.1007-9432.20230140

改进GAN模型在基站流量预测及5G节能中的应用

Application of GAN Model with DE-GWO Optimized LSTM for 5G Energy Consumption Control

王素英 1贾海蓉 1申陈宁 2吴永强 2刘君3

作者信息

  • 1. 太原理工大学 电子信息与光学工程学院,山西 晋中 030600
  • 2. 山西通信通达微波技术有限公司,太原 030000
  • 3. 联通(山西)产业物联网有限公司,太原 030000
  • 折叠

摘要

Abstract

[Purposes]In order to predict the traffic of 5G base stations more accurately and analyze the tidal phenomenon,a traffic prediction method of GAN model with differential algo-rithm is proposed to improve the gray wolf optimized LSTM.And the modified GAN model is used in the timing control of actual base stations,which can effectively save the energy consump-tion.[Methods]First,since GAN is not adaptable to while LSTM is suitable for time series problems,by combining them,the GAN generator optimizes LSTM by differential evolution grey wolf algorithm.Discriminator uses GRU for discriminating,through continuous adversarial training,the generator and discriminator get equilibrium,thus improving the prediction accuracy of 5G base station traffic.Second,because of the poor global search capability of k-means++al-gorithm,the k-means++algorithm is optimized by using an improved artificial bee colony,and is used to output the optimal base station timing time to achieve the maximum energy saving.[Findings]The experimental results show that the proposed model has higher prediction accuracy compared with existing models,and the timing control function can greatly save energy consump-tion.

关键词

基站流量/改进循环神经网络/GAN网络/智能优化算法/k-means++算法

Key words

base station traffic/recurrent neural networks/generative adversarial nets/intel-ligent optimization algorithm/k-means++algorithm

分类

计算机与自动化

引用本文复制引用

王素英,贾海蓉,申陈宁,吴永强,刘君..改进GAN模型在基站流量预测及5G节能中的应用[J].太原理工大学学报,2024,55(4):743-750,8.

基金项目

国家自然科学基金资助项目(12004275) (12004275)

Shanxi Scholarship Council of China(2020-042) (2020-042)

山西省自然科学基金资助项目(20210302123186) (20210302123186)

太原理工大学学报

OA北大核心CSTPCD

1007-9432

访问量0
|
下载量0
段落导航相关论文