|国家科技期刊平台
首页|期刊导航|物理学报|基于异步光学采样的电光频率梳时间抖动测量

基于异步光学采样的电光频率梳时间抖动测量OA北大核心CSTPCD

Using asynchronous optical sampling to measure timing jitter of electro-optic frequency combs

中文摘要英文摘要

电光频率梳是一种单频激光器经相位调制构造的光学频率梳,具有重复频率高、灵活可调等特点,通过精确的色散控制,电光频率梳在时域上可以输出超短脉冲激光序列,其时间抖动特性对于开展精密测量等应用十分重要.本文提出一种基于双光梳异步光学采样原理测量电光频率梳时间抖动的方案.建立了时间抖动测量的理论模型并进行数值模拟.搭建了一台重复频率为10 GHz、脉冲宽度为2.6 ps的电光频率梳,并开展了时间抖动的测量实验.测量的直方图分析表明,电光频率梳的周期抖动为3.86 fs.测量装置主体为光纤结构,且不需要高速光电探测器,有望对电光频率梳、微环频率梳等新型高重频光学频率梳时间抖动的测量与优化起到关键作用.

Electro-optic frequency combs(EOCs)are optical frequency combs constructed by phase modulation of single frequency lasers.The electro-optic modulated optical frequency combs have shown their unique advantages in many application fields due to their high repetition frequencies,high stabilities and other advantages,especially in precision measurement applications.Through accurate dispersion control,the electro-optical frequency combs can output ultra-short pulse laser sequences in the time domain,and their timing jitter characteristic is very important for precision measurement and other applications.This work presents a scheme to measure the timing jitter of the electro-optic combs directly in the time domain based on the principle of dual-comb asynchronous optical sampling method(ASOPS),which relies on temporal cross-correlation between the high repetition rate electro-optic combs and a low repetition rate passively mode-locked fiber laser.The ASOPS process allows timing jitter measurement in a magnified time scale where the timing jitter at a femtosecond level can be received and visualized by standard low speed electronics.We build a theoretical model for timing jitter measurement,conduct a numerical study to verify the model,and also construct an experimental system to characterize the period jitter of a 10-GHz electro-optic comb. Firstly,the theoretical model for measuring timing jitter is established.In this work,the basic theory of measuring the timing jitter is discussed by analyzing the histogram directly in time domain through using the obtained ASOPS signal.Subsequently,numerical simulations are conducted to simulate the ASOPS process after establishing a sequence of Gaussian pulse train with quantum limited timing jitter.Another pulse train without timing jitter serves as a local oscillator.Through the square law optical detection after sum-frequency generation between LO and LUT,the ASOPS process can be realized and periodic jitter can be obtained directly through histogram statistical analysis.The simulation result is consistent with the theoretical result very well.Finally,an EOC system with cascaded modulators at a repetition rate of 10 GHz is designed and built,and a timing jitter measurement system is designed and built with an all-fiber configuration.The period jitter of 10-GHz EOC is measured by using a 161-MHz mode-locked fiber laser as local oscillator.Histogram analysis shows that the period jitter of the EOC is 3.86 fs. This measurement technique does not require to use the intricate electrical phase-locked circuits or a high-speed photodetector to receive ultrashort pulses of EOC.Like the eye map analysis method commonly used in telecommunication,the histogram analysis can be used to determine the timing jitter approaching the quantum limit.This approach is easy to set up and operate,and it is anticipated to become a standard method of measuring period jitter of ultrashort pulse with high repetition frequency in a laboratory setting.It will be particularly useful for measuring timing jitters of the sources of novel high repetition rate optical frequency combs,such as micro-resonators and electro-optic frequency combs.

马博文;戴雯;孟飞;陶家宁;武子铃;石岩青;方占军;胡明列;宋有建

精密测试技术及仪器全国重点实验室(天津大学),天津 300072上海无线电设备研究所,上海 201109中国计量科学研究院时间频率计量研究所,光学频率标准实验室,北京 100029

电光频率梳时间抖动异步光学采样相位噪声

electro-optic frequency combstiming jitterasynchronous optical samplingphase noise

《物理学报》 2024 (014)

84-91 / 8

国家重点研发计划(批准号:2022YFF0706002)资助的课题. Project supported by the National Key R&D Program of China(Grant No.2022YFF0706002).

10.7498/aps.73.20240400

评论