基于改进YOLOv8的PCB焊点语义分割方法OA
Semantic Segmentation Method for PCB Solder Joint Based on Improved YOLOv8
针对具有相似灰度值的印制电路板(Printed Circuit Board,PCB)焊点在检测分割过程中的误检和漏检问题,提出改进YOLOv8的PCB焊锡语义分割模型.在主干网络引入坐标注意力(Coordinate Attention,CA)机制,准确定位焊点空间位置,提升模型捕捉焊点空间信息能力;使用双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换路径聚合网络(Path Aggregation Network,PANet)特征金字塔,更好地捕捉目标的边界信息,并在原有基础上增加一个分割层.引入EIoU损失函数,提供更精细的评估结果并提高泛化能力.通过对比实验得出,所提算法的平均像素精度(mean Pixel Accuracy,mPA)达到 90.37%,平均交并比(mean Intersection over Union,mIoU)达到 83.76%,每秒推理图片张数(Frames Per Second,FPS)达到43,实现了 PCB板更精准的焊点分割.
Aiming at the problem of false detection and missing detection of Printed Circuit Board(PCB)solder joints with similar gray values in the process of detection and segmentation,a semantic segmentation model for PCB solder based on improved YOLOv8 is proposed.Firstly,Coordinate Attention(CA)mechanism is introduced into the backbone network to accurately locate the spatial position of solder joints and to improve the ability of the model to capture the spatial information of solder joints.Secondly,Bi-directional Feature Pyramid Network(BiFPN)is used to replace the Path Aggregation Network(PANet)feature pyramid to better capture the boundary information of the target,and add a segmentation layer on the basis of the original.Finally,the EIoU loss function is introduced to provide finer evaluation results and improve generalization.Comparative experiments show that the mean Pixel Accuracy(mPA),mean Intersection over Union(mIoU)and Frames Per Second(FPS)of the proposed algorithm reach 90.37%,83.76%and 43 FPS,which realizes more accurate solder joint segmentation of PCB board.
卢子册;刘小芳;王德伟
四川轻化工大学自动化与信息工程学院,四川宜宾 644002四川轻化工大学计算机科学与工程学院,四川宜宾 644002
计算机与自动化
YOLOv8语义分割坐标注意力机制双向特征金字塔网络EIoU损失函数
YOLOv8semantic segmentationCA mechanismBiFPNEIoU loss function
《无线电工程》 2024 (007)
1614-1621 / 8
评论