| 注册
首页|期刊导航|无线电工程|基于改进MAAC算法的多无人机自主路径规划

基于改进MAAC算法的多无人机自主路径规划

周从航 李建兴 石宇静 林致睿

无线电工程2024,Vol.54Issue(7):1816-1823,8.
无线电工程2024,Vol.54Issue(7):1816-1823,8.DOI:10.3969/j.issn.1003-3106.2024.07.025

基于改进MAAC算法的多无人机自主路径规划

Multi-UAV Autonomous Path Planning Based on Improved MAAC Algorithm

周从航 1李建兴 1石宇静 2林致睿1

作者信息

  • 1. 福建理工大学 电子电气与物理学院,福建福州 350118||福建省工业集成自动化行业技术开发基地,福建福州 350118
  • 2. 福建理工大学 电子电气与物理学院,福建福州 350118
  • 折叠

摘要

Abstract

Deep reinforcement learning methods are used in multi-UAV autonomous path planning in threat area environments.In order to solve the common problem of difficult convergence in reinforcement learning algorithms,an improved Actor-Attention-Critic for Multi-Agent Reinforcement Learning(MAAC)algorithm is proposed for multi-UAV autonomous path planning.The Markov decision process of reinforcement learning is defined by modeling the multi-UAV potential field environment to provide a reasonable collision-free path planning in dynamic environment.Simulation experiments validate the effectiveness of the proposed algorithm,and verify its superior performance in terms of convergence speed and collision avoidance through comparative simulations.

关键词

无人机/多智能体深度强化学习/自主路径规划/MAAC算法

Key words

UAV/multi-agent deep reinforcement learning/autonomous path planning/MAAC algorithm

分类

航空航天

引用本文复制引用

周从航,李建兴,石宇静,林致睿..基于改进MAAC算法的多无人机自主路径规划[J].无线电工程,2024,54(7):1816-1823,8.

基金项目

福建省自然科学基金(2020J01876) (2020J01876)

福建工程学院科研启动基金(GY-Z21215,GY-Z21216)Fujian Provincial Natural Science Foundation of China(2020J01876) (GY-Z21215,GY-Z21216)

Science Research Foundation for Introduced Talents,Fujian Province of China(GY-Z21215,GY-Z21216) (GY-Z21215,GY-Z21216)

无线电工程

1003-3106

访问量0
|
下载量0
段落导航相关论文