| 注册
首页|期刊导航|无线电通信技术|基于ARIMA-PSO-LSTM的太阳能预测

基于ARIMA-PSO-LSTM的太阳能预测

沈露露 黄晋浩 花敏 周雯

无线电通信技术2024,Vol.50Issue(4):771-778,8.
无线电通信技术2024,Vol.50Issue(4):771-778,8.DOI:10.3969/j.issn.1003-3114.2024.04.020

基于ARIMA-PSO-LSTM的太阳能预测

Solar Intensity Prediction Based on ARIMA-PSO-LSTM Model

沈露露 1黄晋浩 1花敏 1周雯1

作者信息

  • 1. 南京林业大学信息科学技术学院、人工智能学院,江苏南京 210037
  • 折叠

摘要

Abstract

Solar energy is one emerging renewable energy source,which can be converted into electricity for the use of wireless Sen-sor Networks(WSN),and prediction of solar energy can effectively use energy to save energy consumption and maintain continuous and stable operation of network.In this paper,a new combined energy prediction model is proposed to predict solar radiation intensity,in which an improved algorithm Particle Swarm Optimization(PSO)is introduced to find optimal parameters of a Long Short Term Memory(LSTM)model.Auto-Regressive Integrated Moving Average(ARIMA)is initially employed to distill and forecast linear elements of solar radiation data.Secondly,PSO is used to optimize hyperparameters of the LSTM model,which helps to improve the accuracy and robust-ness of the model prediction.Then,the optimized LSTM model is used to predict nonlinear components in the data.Finally,forecast out-comes of both models are combined.Experiments show that the new combined model has higher prediction accuracy than ARIMA,LSTM and other models.

关键词

自回归差分移动平均模型/长短期记忆神经网络模型/粒子群优化算法/能量预测算法

Key words

ARIMA model/LSTM neural network model/PSO algorithm/energy prediction algorithm

分类

信息技术与安全科学

引用本文复制引用

沈露露,黄晋浩,花敏,周雯..基于ARIMA-PSO-LSTM的太阳能预测[J].无线电通信技术,2024,50(4):771-778,8.

基金项目

国家自然科学基金(61801225)National Natural Science Foundation of China(61801225) (61801225)

无线电通信技术

OA北大核心

1003-3114

访问量0
|
下载量0
段落导航相关论文