|国家科技期刊平台
首页|期刊导航|网络安全与数据治理|基于交易时间衰减的以太坊恶意地址检测方法

基于交易时间衰减的以太坊恶意地址检测方法OA

Ethereum malicious address detection method based on transaction time decay

中文摘要英文摘要

提出Trans-TAN模型,用于以太坊上的交易流向图中关联恶意地址的检测任务,模型改进基于Transformer模型的自注意力机制,根据以太坊地址的交易特点并受到牛顿冷却定理的启发,引入随时间交易的时间间隔衰减因素,同时融合以太坊地址间的相似度因素和交易金额因素.基于以上三方面,通过牛顿冷却定理的常微分方程解形式构建的地址关联矩阵,从而改进原有的自注意力矩阵.实验证明,Trans-TAN模型能够有效捕捉以太坊交易流向图过程中恶意节点地址的特征,在测试集中精准率(Precision)、召回率(Recall)和F1 指标优于传统的检测模型.

This article proposes the Trans-TAN model for detecting malicious addresses associated with transaction flow graphs on Ethereum.The model improves the self attention mechanism based on the Transformer model.Inspired by Newton's cooling theo-rem and based on the transaction characteristics of Ethereum addresses,the Trans-TAN model introduces the time decay factor of transaction intervals over time.At the same time,it integrates the similarity factor between Ethereum addresses and the transac-tion amount factor.Based on the above three factors,the address association matrix is constructed in the form of a solution to the ordinary differential equation of Newton's cooling theorem,thereby improving the original self attention matrix.Experimental re-sults show that the Trans-TAN model can effectively capture the characteristics of malicious node addresses in the Ethereum trans-action flow graph process,and its accuracy in the test set(Pre)is improved.The precision,recall,and F1 metrics are superior to traditional detection models.

梁飞;石文君;苏则燊;张敏

北京市公安局经济犯罪侦查总队,北京 100062北京市公安局海淀分局,北京 100086华中科技大学,湖北 武汉 430074北京市公安局网络安全保卫总队,北京 100081

计算机与自动化

以太坊地址牛顿冷却定理时间间隔衰减自注意力机制

Ethereum accountNewton's cooling theoremtime interval decayself attention mechanism

《网络安全与数据治理》 2024 (007)

26-31 / 6

10.19358/j.issn.2097-1788.2024.07.005

评论