基于改进YOLOv8s的多尺度检测算法OA北大核心CSTPCD
Multi-scale object detection algorithm based on improved YOLOv8s
针对绝缘子小目标特征信息不足导致的检测精度低、模型体积大不利于硬件移植等问题,提出一种多尺度检测算法MPH-YOLO.MPH-YOLO首先通过扩充小目标检测尺度,提高小目标感知能力;其次使用SIoU损失函数代替YOLOv8s中的CIoU损失函数作为边框损失函数,增强对目标的定位精度;最后引入更低成本的Ghost卷积代替网络结构中的传统卷积,轻量化模型的体积.改进后的算法在绝缘子数据集上的检测精度和模型轻量化均有提升,检测精度mAP50-95为86.2%,模型体积仅有4.7 MB.实验结果表明,MPH-YOLO不仅能够有效改善小目标检测,而且更加轻量化有利于硬件移植,具有较高的实用价值.
In view of the low detection accuracy caused by insufficient feature information of small objects like insulators and the large model size that is not conducive to hardware transplantation,a multi-scale detection algorithm MPH-YOLO(multiple prediction head-you only look once)is proposed.The algorithm MPH-YOLO improves the detection ability of small objects by expanding the detection scale of small object first,and then the CIoU loss function in YOLOv8s is replaced with the SIoU loss function as the edge loss function,so as to enhance the positional accuracy of the object.The Ghost convolution with lower cost is introduced instead of the traditional convolution in the network structure,so as to lighten the volume of the model.In terms of the improved algorithm,both its detection accuracy and model lightweight on the insulator dataset are improved,with a detection accuracy of 86.2%for mAP50-95 and a model volume of only 4.7 MB.The experimental results show that the MPH-YOLO not only can improve the detection of small objects effectively,but also be more lightweight for hardware transplantation,so it has high practical value.
文思予;张上;张朝阳;冉秀康
重庆理工大学,重庆 400054||水电工程智能视觉监测湖北省重点实验室,湖北 宜昌 443002||湖北省建筑质量检测装备工程技术研究中心,湖北 宜昌 443002水电工程智能视觉监测湖北省重点实验室,湖北 宜昌 443002||湖北省建筑质量检测装备工程技术研究中心,湖北 宜昌 443002
电子信息工程
绝缘子多尺度检测小目标YOLOv8sSIoUGhost卷积
insulatormulti-scale detectionsmall objectYOLOv8sSIoUGhost convolution
《现代电子技术》 2024 (015)
133-138 / 6
评论