|国家科技期刊平台
首页|期刊导航|现代雷达|基于迭代重加权的子阵级MIMO雷达角度超分辨算法

基于迭代重加权的子阵级MIMO雷达角度超分辨算法OA北大核心CSTPCD

Angle Super-resolution Algorithm for Subarray MIMO Radar Based on Iterative Reweighted Approach

中文摘要英文摘要

针对子阵级多输入多输出(MIMO)雷达阵列孔径数量有限带来的高方向图旁瓣问题,构建了子阵级MIMO雷达收发信号和多子阵角度测量模型,提出了基于自适应迭代重加权(AIR)和p-范数约束下迭代重加权最小二乘(p-IRLS)的角度超分辨算法,分析了两种算法的计算复杂度.在仿真实验中验证了两种算法的性能,并对其在单目标和双目标、以及干扰环境检测中的效果进行了比较分析.仿真结果表明,AIR和p-IRLS算法能够有效降低子阵级MIMO雷达的方向图旁瓣电平,同时实现对目标的角度超分辨.和AIR算法相比,p-IRLS算法在低信噪比和邻近目标分辨性能更突出.

A subarray-level MIMO radar transceiver signal and multi-subarray angular measurement model is constructed in this pa-per to address the problem of high directional map sidelobes caused by the limited number of apertures of subarray-level multiple-input multiple-output(MIMO)radar arrays.Angular super-resolution algorithms based on adaptive iterative reweighted(AIR)and iterative reweighted least squares with p-norm constraint(p-IRLS)are proposed and the computational complexity of the two algo-rithms is analyzed.The performance of the two algorithms is verified in simulation experiments,and their effects in single and dual-target,and interference environment detection are comparatively analyzed.The simulation results show that the AIR and p-IRLS al-gorithms are able to effectively reduce the level of directional map sidelobes in subarray-level MIMO radars,while realizing angular super-resolution of targets.Compared with the AIR algorithm,the p-IRLS algorithm is more prominent in low signal-to-noise ratio and neighboring target resolution performance.

王行舒;张劲东;张亚男;董乔龙

南京航空航天大学 电子信息工程学院,江苏 南京 211106

电子信息工程

子阵级多输入多输出雷达自适应迭代重加权迭代重加权最小二乘超分辨

subarray-level multiple-input multiple-output(MIMO)radaradaptive iterative reweightediterative reweighted least squaressuper-resolution

《现代雷达》 2024 (006)

85-91 / 7

国家自然科学基金资助项目(62171220)

10.16592/j.cnki.1004-7859.2024.06.014

评论