| 注册
首页|期刊导航|现代信息科技|基于改进3D U-Net模型的肺结节分割方法研究

基于改进3D U-Net模型的肺结节分割方法研究

石征锦 李文慧 高天

现代信息科技2024,Vol.8Issue(13):52-55,60,5.
现代信息科技2024,Vol.8Issue(13):52-55,60,5.DOI:10.19850/j.cnki.2096-4706.2024.13.011

基于改进3D U-Net模型的肺结节分割方法研究

Research on Lung Nodule Segmentation Method Based on Improved 3D U-Net Model

石征锦 1李文慧 1高天1

作者信息

  • 1. 沈阳理工大学,辽宁 沈阳 110159
  • 折叠

摘要

Abstract

Due to the high complexity of feature information in lung CT images,the classic 3D U-Net network exhibits low accuracy in lung nodule segmentation,leading to issues such as miss segmentation.To address this,a network model based on improved 3D U-Net is proposed.This model integrates 3D U-Net network with dense blocks with the Bidirectional Feature Pyramid Network(Bi-FPN)to improve the model's segmentation accuracy.The adoption of deep supervision training mechanism further enhances network performance.Comparative experiments and evaluations are conducted on the public dataset LUNA-16,and the results show that the improved 3D U-Net network has a 4%increase in Dice similarity coefficient,a segmentation accuracy of 93.9%,and a sensitivity of 94.3%compared to the original model.This proves that the model has certain application value in the accuracy and precision of lung nodule segmentation.

关键词

肺结节分割/CT/3D U-Net/双向特征网络/深度监督

Key words

lung nodule segmentation/CT/3D U-Net/bi-directional feature network/Deep Supervision

分类

信息技术与安全科学

引用本文复制引用

石征锦,李文慧,高天..基于改进3D U-Net模型的肺结节分割方法研究[J].现代信息科技,2024,8(13):52-55,60,5.

现代信息科技

2096-4706

访问量0
|
下载量0
段落导航相关论文